Direct Routing: Algorithms and Complexity

  • Costas Busch
  • Malik Magdon-Ismail
  • Marios Mavronicolas
  • Paul Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3221)


Direct routing is the special case of bufferless routing where N packets, once injected into the network, must be routed along specific paths to their destinations without conflicts. We give a general treatment of three facets of direct routing:

  • Algorithms. We present a polynomial time greedy algorithm for arbitrary direct routing problems which is worst-case optimal, i.e., there exist instances for which no direct routing algorithm is better than the greedy. We apply variants of this algorithm to commonly used network topologies. In particular, we obtain near-optimal routing time for the tree and d-dimensional mesh, given arbitrary sources and destinations; for the butterfly and the hypercube, the same result holds for random destinations.

  • Complexity. By a reduction from Vertex Coloring, we show that Direct Routing is inapproximable, unless P=NP.

  • Lower Bounds for Buffering. We show that certain direct routing problems cannot be solved efficiently; to solve these problems, any routing algorithm needs buffers. We give non-trivial lower bounds on such buffering requirements for general routing algorithms.


Greedy Algorithm Injection Time Chromatic Number Dependency Graph Direct Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Symvonis, A.: Routing on trees. Information Processing Letters 57, 215–223 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Direct routing on trees. In: Proc. 9th Symposium on Discrete Algorithms (SODA 1998), pp. 342–349 (1998)Google Scholar
  3. 3.
    Cypher, R., auf der Heide, F.M., Scheideler, C., Vöcking, B.: Universal algorithms for store-and-forward and wormhole routing, pp. 356–365 (1996)Google Scholar
  4. 4.
    Adler, M., Khanna, S., Rajaraman, R., Rosen, A.: Time-constrained scheduling of weighted packets on trees and meshes. In: Proc. 11th Symposium on Parallel Algorithms and Architectures, SPAA (1999)Google Scholar
  5. 5.
    Alon, N., Chung, F., Graham, R.L.: Routing permutations on graphs via matching. SIAM Journal on Discrete Mathematics 7, 513–530 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ben-Aroya, I., Chinn, D.D., Schuster, A.: A lower bound for nearly minimal adaptive and hot potato algorithms. Algorithmica 21, 347–376 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 278–285 (2000)Google Scholar
  8. 8.
    Meyer auf der Heide, F., Scheideler, C.: Routing with bounded buffers and hotpotato routing in vertex-symmetric networks. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 341–354. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Meyer auf der Heide, F., Vöcking, B.: Shortest-path routing in arbitrary networks. Journal of Algorithms 31, 105–131 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ostrovsky, R., Rabani, Y.: Universal O(congestion+dilation+log1+ε N) local control packet switching algorithms. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, New York, pp. 644–653 (1997)Google Scholar
  12. 12.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  13. 13.
    Maggs, B.M., auf der Heide, F.M., Vocking, B., Westermann, M.: Exploiting locality for data management in systems of limited bandwidth. In: IEEE Symposium on Foundations of Computer Science, pp. 284–293 (1997)Google Scholar
  14. 14.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hypercubes. Morgan Kaufmann, San Mateo (1992)MATHGoogle Scholar
  15. 15.
    Valiant, L.G.: A scheme for fast parallel communication. SIAM Journal on Computing 11, 350–361 (1982)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In: Proc. 13th Annual ACM Symposium on Theory of Computing, pp. 263–277 (1981)Google Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, Ney York (1979)MATHGoogle Scholar
  18. 18.
    Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: IEEE Conference on Computational Complexity, pp. 278–287 (1996)Google Scholar
  19. 19.
    Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, New York (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Costas Busch
    • 1
  • Malik Magdon-Ismail
    • 1
  • Marios Mavronicolas
    • 2
  • Paul Spirakis
    • 3
  1. 1.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  3. 3.Department of Computer Engineering and InformaticsUniversity of Patras, RionPatrasGreece

Personalised recommendations