Advertisement

Micro-Neurosurgical System in the Deep Surgical Field

  • Daisuke Asai
  • Surman Katopo
  • Jumpei Arata
  • Shin’ichi Warisawa
  • Mamoru Mitsuishi
  • Akio Morita
  • Shigeo Sora
  • Takaaki Kirino
  • Ryo Mochizuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

In neurosurgery, surgeons have to perform precise manipulations with poor visibility due to the presence of blood or cerebrospinal fluid and it is particularly difficult to operate in the deep surgical field. The authors have developed a microsurgical system for neurosurgery in the deep surgical field that addresses these difficulties. The authors succeeded in suturing the carotid artery of a rat under a glass tube 120 [mm] in depth and 50 [mm] in diameter. In this paper, the authors propose the concept of robotic-assisted micro-neurosurgery. The design and the system are presented. Furthermore, the performance of the system and in-vivo experiments on rats are also reported.

Keywords

Motion Range Master Manipulator Surgical Microscope Insertion Probe Slave Manipulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Perneczky, A., Fries, G.: Endoscope-assisted Brain Surgery: Part 1-Evolution, Basic Concept, and Current Technique. Neurosurgery 42(2), 219–224 (1998)CrossRefGoogle Scholar
  2. 2.
    Davis, B., Starkie, S., et al.: Neurobot: a special-purpose robot for Neurosurgery. In: Proc. of 2000 IEEE International Conference on Robotics and Automation, pp. 4103–4108 (2000)Google Scholar
  3. 3.
    Le Roux, P., Das, H., et al.: Robotic-assisted Microsurgery: A Feasibility Study in the Rat. Neurosurgery 48(3), 584–589 (2001)CrossRefGoogle Scholar
  4. 4.
    Mitsuishi, M., Iizuka, Y., et al.: Remote Operation of a Micro-Surgical System. In: Proc. of IEEE 1998 International Conference on Robotics and Automation, pp. 1013–1019 (1998)Google Scholar
  5. 5.
    Salcudean, S.E., et al.: Performance Measurement in Scaled Teleoperation for Microsurgery. In: CVRMed-MRCAS 1997, pp. 789–798 (1997)Google Scholar
  6. 6.
    Miyata, N., Kobayashi, E., et al.: Micro-grasping Forceps Manipulator for MRGuided Neurosurgery. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 107–113. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Hongo, K., Kobayashi, S., Kakizawa, Y., et al.: Neurobot:Telecontrolled Micromanipulator System for Minimally Invasive Microneurosurgery–Preliminary Results. Neurosurgery 51(4), 985–988 (2002)CrossRefGoogle Scholar
  8. 8.
    Guthart, G., Salisbury, J.K.: The Intuitive Telesurgery System: Overview and Application. In: Proc. of 2000 IEEE International Conference on Robotics and Automation, pp. 618–621 (2000)Google Scholar
  9. 9.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Daisuke Asai
    • 1
  • Surman Katopo
    • 1
  • Jumpei Arata
    • 1
  • Shin’ichi Warisawa
    • 1
  • Mamoru Mitsuishi
    • 1
  • Akio Morita
    • 2
  • Shigeo Sora
    • 2
  • Takaaki Kirino
    • 2
  • Ryo Mochizuki
    • 3
  1. 1.School of EngineeringThe University of TokyoTokyoJapan
  2. 2.School of MedicineThe University of Tokyo 
  3. 3.NHK Engineering Services, IncTokyoJapan

Personalised recommendations