Advertisement

3D Computational Mechanical Analysis for Human Atherosclerotic Plaques Using MRI-Based Models with Fluid-Structure Interactions

  • Dalin Tang
  • Chun Yang
  • Jie Zheng
  • Pamela K. Woodard
  • Gregorio A. Sicard
  • Jeffrey E. Saffitz
  • Shunichi Kobayashi
  • Thomas K. Pilgram
  • Chun Yuan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. It is believed that mechanical forces play an important role in plaque progression and rupture. A three-dimensional (3D) MRI-based finite-element model with multi-component plaque structure and fluid-structure interactions (FSI) is introduced to perform mechanical analysis for human atherosclerotic plaques and identify critical flow and stress/strain conditions which may be related to plaque rupture. The coupled fluid and structure models are solved by ADINA, a well-tested finite-element package. Our results indicate that pressure conditions, plaque structure, component size and location, material properties, and model assumptions all have considerable effects on flow and plaque stress/strain behaviors. Large-scale patient studies are needed to validate the computational findings. This FSI model provides more complete stress/strain analysis and better interpretation of information from MR images and may lead to more accurate plaque vulnerability assessment and rupture predictions.

Keywords

Pulsate Pressure Atherosclerotic Plaque Plaque Rupture Plaque Morphology Plaque Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bathe, K.J.: Finite Element Procedures. Prentice Hall, New Jersey (1996)Google Scholar
  2. 2.
    Bathe, K.J.: Theory and Modeling Guide, Vol I: ADINA; Vol II: ADINA-F. ADINAR&D, Inc, Watertown (2002)Google Scholar
  3. 3.
    Huang, H., Virmani, R., Younis, H., Burke, A.P., Kamm, R.D., Lee, R.T.: The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103, 1051–1056 (2001)Google Scholar
  4. 4.
    Naghavi, M., et al.: (57 co-authors including C. Yuan): From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14), 1664–1672 (2003)CrossRefGoogle Scholar
  5. 5.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit. An Object-Oriented Approach To 3D Graphics, 2nd edn. Prentice Hall, Englewood Cliffs (1998)Google Scholar
  6. 6.
    Tang, D., Yang, C., Kobayashi, S., Ku, D.N.: Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3D FSI models. J. Biomech. Engng. (2004) (in press)Google Scholar
  7. 7.
    Tang, D., Yang, C., Zheng, J., Woodard, P.K., Sicard, G.A., Saffitz, J.E., Yuan, C.: 3D MRI-Based Multi-Component FSI Models for Atherosclerotic Plaques a 3-D FSI model. Annals of Biomedical Engineering 32(7), 947–960 (2004)CrossRefGoogle Scholar
  8. 8.
    Williamson, S.D., Lam, Y., Younis, H.F., Huang, H., Patel, S., Kaazempur-Mofrad, M.R., Kamm, R.D.: On the sensitivity of wall stresses in diseased arteries to variable material properties. J. Biomechanical Engineering 125, 147–155 (2003)CrossRefGoogle Scholar
  9. 9.
    Yuan, C., Mitsumori, L.M., Beach, K.W., Maravilla, K.R.: Special review: Carotidatherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221, 285–299 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dalin Tang
    • 1
  • Chun Yang
    • 2
  • Jie Zheng
    • 3
  • Pamela K. Woodard
    • 3
  • Gregorio A. Sicard
    • 4
  • Jeffrey E. Saffitz
    • 5
  • Shunichi Kobayashi
    • 6
  • Thomas K. Pilgram
    • 3
  • Chun Yuan
    • 7
  1. 1.Mathematical Sciences DepartmentWorcester Polytechnic InstituteWorcesterUSA
  2. 2.Mathematics DeptBeijing Normal UniversityBeijingChina
  3. 3.Mallinkcrodt Institute of RadiologyWashington UniversitySt. LouisUSA
  4. 4.Department of SurgeryWashington UniversitySt. LouisUSA
  5. 5.Dept of PathologyWashington UniverstySt. LouisUSA
  6. 6.Dept. of Functional Machinery and MechanicsShinshu UnivNaganoJapan
  7. 7.Deparment of RadiologyUniversity of WashingtonSeattleUSA

Personalised recommendations