Advertisement

An Anisotropic Material Model for Image Guided Neurosurgery

  • Corey A. Kemper
  • Ion-Florin Talos
  • Alexandra Golby
  • Peter M. Black
  • Ron Kikinis
  • W. Eric L. Grimson
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

In order to combine preoperative data with intraoperative scans for image-guided neurosurgery visualization, accurate registration is necessary. It has been determined previously that a suitable way to model the non-rigid deformations due to brain shift is via a biomechanical model that treats the brain as a homogeneous, isotropic, linear elastic solid. This work extends that model-based non-rigid registration algorithm to take into account the underlying white matter structure, derived from diffusion tensor MRI, to more accurately model the brain. Experiments performed on retrospective surgical cases were used to evaluate the results of the registration algorithm in comparison to the earlier model.

Keywords

Fractional Anisotropy White Matter Tract Biomechanical Model Anisotropic Model Rigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding 66(2), 207–222 (1997)CrossRefGoogle Scholar
  2. 2.
    Ferrant, M.: Physics-based deformable modeling of volumes and surfaces for medical image registration, segmentation and visualization. PhD thesis, Université Catholique de Louvain (April 2001) Google Scholar
  3. 3.
    Gering, D.T., Nabavi, A., Kikinis, R., Hata, N., O’Donnell, L.J., Grimson, W.E., Jolesz, F.A., Black, P.M., Wells III., W.M.: An integrated visualization system for surgical planning and guidance using image fusion and an open mr. Journal of Magnetic Resonance Imaging 13, 967–975 (2001)CrossRefGoogle Scholar
  4. 4.
    Hagemann, A., Rohr, K., Stiehl, H.S., Spetzger, U., Gilsbach, J.M.: Biomechanical modeling of the human head for physically based, nonrigid image registration. IEEE Transactions on Medical Imaging 18(10), 875–884 (1999)CrossRefGoogle Scholar
  5. 5.
    Kemper, C.A.: Incorporation of diffusion tensor mri in non-rigid registration for image-guided neurosurgery. Master’s thesis, Massachusetts Institute of Technology (June 2003) Google Scholar
  6. 6.
    Miga, M.I., Paulsen, K.D., Lemery, J.M., Eisner, S.D., Hartov, A., Kennedy, F.E., Roberts, D.W.: Model-updated image guidance: Initial clinical experiences with gravity-induced brain deformation. IEEE Transactions on Medical Imaging 18(10), 866–874 (1999)CrossRefGoogle Scholar
  7. 7.
    Miller, K., Chinzei, K.: Mechanical properties of brain tissue in tension. Journal of Biomechanics 35, 483–490 (2002)CrossRefGoogle Scholar
  8. 8.
    Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent proper tiesof the brain undergoing large deformation. Transactions of the ASME 124, 244–252 (2002)Google Scholar
  9. 9.
    Shimony, J.S., McKinstry, R.C., Akbudak, E., Aronovitz, J.A., Snyder, A.Z., Lori, N.F., Cull, T.S., Conturo, T.E.: Quantitative diffusion tensor anisotropy brain mr imaging: normative human data and anatomic analysis. Radiology 212, 770–784 (1999)Google Scholar
  10. 10.
    Tei, A.: Multi-modality image fusion by real-time tracking of volumetric brain deformation during image guided neurosurgery. Master’s thesis, Massachusetts Institute of Technology (February 2002) Google Scholar
  11. 11.
    Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volum eregistration by maximization of mutual information. Medical Image Analysis, 35–51 (March 1996)Google Scholar
  12. 12.
    West, J.D., Paulsen, K.D., Inati, S., Kennedy, F., Hartov, A., Roberts, D.W.: Incorporation of diffusion tensor anisotropy in brain deformation models for updating preoperative images to improve image-guidance. In: International Symposium on Biomedical Imaging, pp. 509–512 (2002)Google Scholar
  13. 13.
    Zienkewickz, O.C., Taylor, R.L.: The Finite Element Method, 4th edn., vol. 1. McGraw-Hill Book Company, New York (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Corey A. Kemper
    • 1
  • Ion-Florin Talos
    • 2
  • Alexandra Golby
    • 2
  • Peter M. Black
    • 2
  • Ron Kikinis
    • 2
  • W. Eric L. Grimson
    • 1
  • Simon K. Warfield
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departments of Neurosurgery and RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations