A Framework for the Generation of Realistic Brain Tumor Phantoms and Applications

  • Jan Rexilius
  • Horst K. Hahn
  • Mathias Schlüter
  • Sven Kohle
  • Holger Bourquain
  • Joachim Böttcher
  • Heinz-Otto Peitgen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)


A quantitative analysis of brain tumors is an important factor that can have direct impact on a patient’s prognosis and treatment. In order to achieve clinical relevance, reproducibility and especially accuracy of a proposed method have to be tested. We propose a framework for the generation of realistic digital phantoms of brain tumors of known volumes and their incorporation into an MR dataset of a healthy volunteer. Deformations that occur due to tumor growth inside the brain are simulated by means of a biomechanical model. Furthermore, a model for the amount of edema at each voxel is included as well as a simulation of contrast enhancement, which provides us with an additional characterization of the tumor. A “ground truth” is generally not available for brain tumors. Our proposed framework provides a flexible tool to generate representative datasets with known ground truth, which is essential for the validation and comparison of current and new quantitative approaches. Experiments are carried out using a semi-automated volumetry approach for a set of generated tumor datasets.


Brain Tumor Ground Truth Biomechanical Model Tissue Class Extracellular Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Osborn, A.G., Tong, K.A.: Handbook of Neuroradiology: Brain and Skull, 2nd edn. Mosby- Year Book, Inc., Missouri (1991)Google Scholar
  2. 2.
    Kaus, M., Warfield, S.K., Nabavi, A., et al.: Automated Segmentation of MR Images of Brain Tumors. Radiology 218(2), 586–591 (2001)Google Scholar
  3. 3.
    Moonis, G., Liu, J., Udupa, J.K., Hackney, D.B.: Estimation of Tumor Volume with Fuzzy- Connectedness Segmentation of MR Images. Am. J. Neuroradiol. 23(3), 356–363 (2002)Google Scholar
  4. 4.
    Guyon, J.-P., Foskey, M., Kim, J., et al.: VETOT, Volume Estimation and Tracking Over Time: Framework and Validation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 142–149. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Prastawa, M., Bullitt, E., Moon, N., et al.: Automatic Brain Tumor Segmentation by Subject Specific Modification of Atlas Priors. Acad. Radiol. 10, 1341–1348 (2003)CrossRefGoogle Scholar
  6. 6.
    Tofts, P.S., Barker, G.J., Filippi, M., Gawne-Cain, M., Lai, M.: An oblique cylinder contrast adjusted (OCCA) phantom to measure the accuracy of MRI brain lesion volume estimation schemes in multiple sclerosis. J. Magn. Reson. Imaging 15(2), 183–192 (1997)CrossRefGoogle Scholar
  7. 7.
    Collins, D., Zijdenbos, A., Kollokian, V., et al.: Design and Construction of a Realistic Digital Brain Phantom. IEEE TMI 17(5), 463–468 (1998)Google Scholar
  8. 8.
    Rexilius, J., Hahn, H.K., Bourquain, H., Peitgen, H.-O.: Ground truth in MS lesion volumetry – A phantom study. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 546–553. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kansal, A.R., Torquato, S., Harsh, G.R., et al.: Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton. J. Theor. Biol. 203(4), 367–382 (2000)CrossRefGoogle Scholar
  10. 10.
    Wasserman, R., Acharya, R., Sibata, C., Shin, K.H.: A Patient-Specific In Vivo Tumor Model. Math. Biosci. 136(2), 111–140 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ferrant, M., Nabavi, A., Macq, B., et al.: Registration of 3D interoperative MR images of the brain using a finite element biomechanical model. IEEE TMI 20(12), 1384–1397 (2001)Google Scholar
  12. 12.
    Rexilius, J., Warfield, S.K., Guttmann, C.R.G., et al.: A Novel Nonrigid Registration Algorithm and Applications. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 923–931. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Hahn, H.K., Peitgen, H.-O.: The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 134–143. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Zienkewickz, O.C., Taylor, R.L.: The Finite Element Method. McGraw Hill Book Co., New York (1987)Google Scholar
  15. 15.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  16. 16.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2003)zbMATHGoogle Scholar
  17. 17.
    Me VisLab 1.0, (c) MeVis gGmbH (2004), Available at:
  18. 18.
    Noe, A., Gee, J.C.: Partial Volume Segmentation of Cerebral MRI Scans with Mixture Model Clustering. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 423–430. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Tofts, P.S., Kermode, A.G.: Measurement of the Blood-Brain Barrier Permeability and Leak Space Using Dynamic MR Imaging. 1. Fundamental Concepts. Magn. Reson. Med. 17, 357–367 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan Rexilius
    • 1
  • Horst K. Hahn
    • 1
  • Mathias Schlüter
    • 1
  • Sven Kohle
    • 1
  • Holger Bourquain
    • 1
  • Joachim Böttcher
    • 2
  • Heinz-Otto Peitgen
    • 1
  1. 1.MeVis – Center for Medical Diagnostic Systems and VisualizationBremenGermany
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity of JenaGermany

Personalised recommendations