Advertisement

Physiopathology of Pulmonary Airways: Automated Facilities for Accurate Assessment

  • Diane Perchet
  • Catalin I. Fetita
  • Françoise Prêteux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

In the framework of computer-assisted diagnosis, pulmonary airway investigation based on multi detector computed tomography (MDCT) requires to provide radiologists and clinicians with advanced tools for interactive exploration, quantitative assessment and follow-up. This paper develops a set of automated investigation facilities relying on 3D airway reconstruction, enhanced central axis-based description and accurate meshing. By overcoming the limitations encountered by the current post-processing techniques available in clinical routine, the proposed tools contribute to increase the diagnosis confidence level and provide better insights into the physiopathology of airways.

Keywords

Voronoi Diagram Surface Mesh Multi Detector Compute Tomography Bronchial Tree Virtual Bronchoscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grenier, P., Beigelman, C.: Spiral CT of the bronchial tree. In: Rémy-Jardin, M., Rémy, J. (eds.) Medical Radiology: Spiral CT of the Chest, pp. 185–199. Springer, Berlin (1996)Google Scholar
  2. 2.
    Fetita, C.I., Prêteux, F., Beigelman-Aubry, C., Grenier, P.: Pulmonary airways:3D reconstruction from multi-slice CT and clinical investigation. To appear in IEEE Trans on Med Imaging (2004)Google Scholar
  3. 3.
    Kwon, G.H., Chae, S.W., Lee, L.J.: Automatic generation of tetrahedral meshes from medical images. Computers and structures 81, 765–775 (2003)CrossRefGoogle Scholar
  4. 4.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
  5. 5.
    Lachaud, J.-O., Montanvert, A.: Deformable meshes with automated topologychanges for coarse-to-fine three-dimensional surface extraction. Medical Image Analysis 3(2), 187–207 (1998)CrossRefGoogle Scholar
  6. 6.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: a high resolution 3D surface construction algorithm. Computer Graphics 21, 163–169 (1987)CrossRefGoogle Scholar
  7. 7.
    Wood, Z.J., Schroder, P., Breen, D., Desbrun, M.: Semi-Regular Mesh Extraction From Volumes. In: Proc. of IEEE Visualization, pp. 275–282 (2000)Google Scholar
  8. 8.
    Summers, R.M., Cebral, J.R.: Tracheal and Central Bronchial Aerodynamics Using Virtual Bronchoscopy. In: Chen, C.-T., Clough, A.V. (eds.) Medical Imaging 2001: Physiology and Function from Multidimensional Images Proceedings of SPIE, vol. 4321, pp. 22–31 (2001)Google Scholar
  9. 9.
    Lee, T.-Y., Lin, C.-H.: Growing-cube isosurface extraction algorithm for medical volume data. Computerized Medical Imaging and Graphics 25, 405–415 (2001)CrossRefGoogle Scholar
  10. 10.
    Eck, M., Hoppe, H.: Automatic reconstruction of B-Spline surfaces of arbitrary topological type. In: ACM SIGGRAPH Proc. pp. 325–334 (1996)Google Scholar
  11. 11.
    Ma, C.M., Sonka, M.: A Fully Parallel 3D Thinning Algorithm and its Applications. Computer vision and image understanding 64(3), 420–433 (1996)CrossRefGoogle Scholar
  12. 12.
    Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: IEEE 20th annual symphosium on foundations of computer science, pp. 18–27 (1979)Google Scholar
  13. 13.
    Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis transform of 3D polyedral solids. IEEE transactions on visualization and computer graphics 2(1), 44–61 (1996)CrossRefGoogle Scholar
  14. 14.
    Zhou, Y., Toga, A.: Efficient skeletonization of volumetric objects. IEEE Trans. on visualization and computer graphics 5(3), 196–209 (1999)CrossRefGoogle Scholar
  15. 15.
    Vial, L., Perchet, D., Fodil, R., Caillibotte et al: Airflow modeling in a CT-scanned human airway geometry. to appear in European Society of Biomechanics (ESB) Conference (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Diane Perchet
    • 1
  • Catalin I. Fetita
    • 1
  • Françoise Prêteux
    • 1
  1. 1.ARTEMIS Project UnitINT, Groupe des Ecoles des TélécommunicationsEvry CedexFrance

Personalised recommendations