Advertisement

Modeling of Brain Tissue Retraction Using Intraoperative Data

  • Hai Sun
  • Francis E. Kennedy
  • Erik J. Carlson
  • Alex Hartov
  • David W. Roberts
  • Keith D. Paulsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

We present a method for modeling tissue retraction during image-guided neurosurgery. A poroelastic brain model is driven by the stereoscopically-measured motion of a retractor to produce a full volume displacement field, which is used to update the preoperative MR images. Using the cortical surface surrounding the retractor as an independent evaluative landmark, we show that our approach is capable of capturing approximately 75% of the cortical deformation during tissue retraction.

Keywords

Cortical Surface Iterative Close Point Stereo Pair Operating Microscope Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hartkens, T., Hill, D., Castellano-Smith, A., Hawkes, D., Maurer, C., Martin, A., Hall, W., Liu, H., Truwit, C.: Measurement and analysis of brain deformation during neurosurgery. IEEE Transactions on Medical Imaging 22(1), 82–92 (2003)CrossRefGoogle Scholar
  2. 2.
    Koyama, T., Okudera, H., Kobayashi, S.: Computer -generated surgical simulationof morpholocial changes in microstructures: Concepts of virtual retractor. Neurosurgery 46(1), 118–135 (2000)Google Scholar
  3. 3.
    Paulsen, K., Miga, M., Kennedy, F., Hoopes, P., Hartov, A., Roberts, D.: A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Transactions on Biomedical Engineering 46, 213–225 (1999)CrossRefGoogle Scholar
  4. 4.
    Ferrant, M., Nabavi, A., Macq, B., Jolesz, F., Kikinis, R., Warfield, S.: Registration of 3-d intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Transactions on Medical Imaging 20, 1384–1397 (2001)CrossRefGoogle Scholar
  5. 5.
    Skrinjar, O., Nabavi, A., Duncan, J.: Model-driven brain shift compensation. Medical Image Analysis 6, 361–373 (2002)CrossRefGoogle Scholar
  6. 6.
    Miga, M., Roberts, D., Kennedy, F., Platenik, L., Hartov, A., Lunn, K., Paulsen, K.: Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49, 75–85 (2001)CrossRefGoogle Scholar
  7. 7.
    Platenik, L., Miga, M., Roberts, D., Lunn, K., Kennedy, F., Hartov, A., Paulsen, K.: In vivo quantification of retraction deformation modeling for updated imageguidance during neurosurgery. IEEE Transactions on Biomedical Engineering 49(8), 823–835 (2001)CrossRefGoogle Scholar
  8. 8.
    Sun, H., Farid, H., Rick, K., Hartov, A., Roberts, D., Paulsen, K.: Estimating cortical surface motion using stereopsis for brain deformation models. Medical Image Computing and Computer-Assisted Intervention 2878, 794–801 (2003)CrossRefGoogle Scholar
  9. 9.
    Sun, H., Roberts, D., Farid, H., Wu, Z., Hartov, A., Paulsen, K.: Cortical surface tracking using a stereoscopic operating microscope. Neurosurgery (2004) (in press)Google Scholar
  10. 10.
    Sun, H., Lunn, K., Farid, H., Wu, Z., Roberts, D., Hartov, A., Paulsen, K.: Stereopsis-driven brain shift compensation. IEEE Transactions on Medical Imaging (2004) (submitted)Google Scholar
  11. 11.
    Sullivan, J., Charron, G., Paulsen, K.: A three-dimensional mesh generator for arbitrary multiple material domains. Finite Elements in Analysis and Design 25, 219–241 (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Sun, H., Farid, H., Hartov, A., Lunn, K., Roberts, D., Paulsen, K.: Real-time correction scheme for calibration and implementation of microscope-based imageguided neurosurgery. In: Proceedings of SPIE Medical Imaging, Visualization, Display, and Image-Guided Procedures vol. 4681, 47–54 (2002)Google Scholar
  13. 13.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  14. 14.
    Biot, M.: General theory of three-dimensional consolidation. Journal of Applied Physics 12, 155–164 (1941)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hai Sun
    • 1
  • Francis E. Kennedy
    • 1
  • Erik J. Carlson
    • 1
  • Alex Hartov
    • 1
  • David W. Roberts
    • 2
  • Keith D. Paulsen
    • 1
    • 2
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Dartmouth Hitchcock Medical CenterLebanonUSA

Personalised recommendations