Simulation Model of Intravascular Ultrasound Images

  • Misael Dario Rosales Ramírez
  • Petia Radeva Ivanova
  • Josepa Mauri
  • Oriol Pujol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)


The extraction of quantitative information through Intravascular Ultrasound (IVUS) images is a very important goal for the diagnostic and the therapy in atherosclerotic vessels. The correct interpretation highly depends on what gray level values of the image mean, i.e understanding of IVUS image formation. In this project, we propose a simple physical model for simulating IVUS images, based on a discrete representation of the tissue by individual scatterers elements with given spatial distribution and Backscattering Cross Section. This simulation allows studying the significance and the relation between different tissues and the image. Our model allows to study the physics parameters for the IVUS image generation in order to help to the best interpretation (the study of the visibility and robust discrimination of the different structures) as well as to allow creating image data bases to be used during validation of image processing techniques.


Gray Level Real Image Image Processing Technique Arterial Structure IVUS Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yock, P., Linker, D., Saether, O., et al.: Intravascular two dimensional catheter ultrasound, Initial clinical studies, abstracted. Circulations 78, (suppl II), II-21(1988)Google Scholar
  2. 2.
    Graham, S., Brands, D., Sheehan, H., et al.: Assesment of arterial wall morphology using intravascular ultrasound in vitro and in patient. Circulations (Suppl II), II-56 (1989)Google Scholar
  3. 3.
    Berry E., et al.: Intravascular ultrasound-guided interventions in coronary artery disease, Tech. Rep., Healt Technology Assesment, NHS R D HTA Programme. A systemac literature review, with decisions-analytic modelling, of outcomes and cot-effectiveness (2000) Google Scholar
  4. 4.
    Jensen, J.: A Model for the Propagation and Scattering of Ultrasound in Tissue. J. Acoust. Soc. Am. 89, 182–191 (1991)CrossRefGoogle Scholar
  5. 5.
    Jensen, J.: A Program for Simulating Ultrasound Systems. In: Paper presented at the 10th Nordic-Baltic Conference on Biomedical Imaging Published in Medical and Biological Engineering and Computing Part 1, Supp.1, 351-353 (1996)Google Scholar
  6. 6.
    Trobaugh, J.: An Image Model for Ultrasound Incorporating Surface Shape and Microstructure and Characteristics of Imaging System, Washington University, Sever Institute of Technology, Departmet of Electrical Ingeniering (2000) Doctoral thesis Google Scholar
  7. 7.
    Verhoef, W.A., Cloostermans, M.J., Thijssen, J.M.: The Impulse Response of a Focused Source With an Arbitrary Axisymmetric Surface Velocity Distribution. Journal Acoustic Society American 75, 1717–1721 (1984)Google Scholar
  8. 8.
    Fontaine, I., Bertrand, M., Cloutier, G.: A system-based a pproach to modelling theultrasound signal backscattered by red blood cells. Biophysical Journal 77, 2387–2399 (1999)CrossRefGoogle Scholar
  9. 9.
    Fan, L., Herrington, D., Santiago, P.: Simulation of b-mode ultrasound to determinefeatures of vessel for image analysis. Computers in Cardiology 25, 165–168 (1998)Google Scholar
  10. 10.
    Cheeke, D.: Fundamentals and Aplications of UltrasonicWaves. CRC PRESS, Boca Raton (2002)Google Scholar
  11. 11.
    Kinsler, L.: Fundamentos de acústica, LIMUSA, Noriega Editores (1995) Google Scholar
  12. 12.
    Zagzebski, J.: Essential of Ultrasound Physics. Mosby A. hardcourt Healt Sciences Company, New York (1996)Google Scholar
  13. 13.
    Perelman, L., et al.: Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution. Physical Review Letters 80(3), 627–630 (1998)CrossRefGoogle Scholar
  14. 14.
    Rosales, M., Radeva, P.: A basic model for IVUS image simulation in Handbook of Medical Imaging. Kluwer Academic/Plenium Publishers (2004)Google Scholar
  15. 15.
    Boston Scientific Corporation, Scimed division, The ABCs of IVUS1 (1998) Google Scholar
  16. 16.
    Arendt Jesen J.: Linear Descripcion of Ultrasound Imaging System, Notes for the international Summer School on Advanced Ultrasound Imaging, Tecnical University of Denamar (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Misael Dario Rosales Ramírez
    • 1
    • 2
  • Petia Radeva Ivanova
    • 2
  • Josepa Mauri
    • 3
  • Oriol Pujol
    • 2
  1. 1.Laboratorio de Física AplicadaUniversidad de los AndesMéridaVenezuela
  2. 2.Centre de Visió per ComputadorBellaterra, BarcelonaSpain
  3. 3.Hospital Universitari Germans Trias y PujolBadalonaSpain

Personalised recommendations