Advertisement

Visualization, Planning, and Monitoring Software for MRI-Guided Prostate Intervention Robot

  • Emese Balogh
  • Anton Deguet
  • Robert C. Susil
  • Axel Krieger
  • Anand Viswanathan
  • Cynthia Ménard
  • Jonathan A. Coleman
  • Gabor Fichtinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

This paper reports an interactive software interface for visualization, planning, and monitoring of intra-prostatic needle placement procedures performed with a robotic assistant device inside standard cylindrical high-field magnetic resonance imaging (MRI) scanner. We use anatomical visualization and image processing techniques to plan the process and apply active tracking coils to localize the robot in real-time to monitor its motion relative to the anatomy. The interventional system is in Phase-I clinical trials for prostate biopsy and marker seed placement. The system concept, mechanical design, and in-vivo canine studies have been presented earlier [6,10,14]. The software architecture and three-dimensional application software interface discussed in this paper are new additions. This software was tested on pre-recorded patient data.

Keywords

Magnetic Resonance Imaging Scanner Prostate Biopsy Inverse Kinematic Magn Reson Image Monitoring Software 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adusumilli, S., Pretorius, E.S.: Magnetic resonance imaging of prostate cancer. Semin. Urol. Oncol. 20(3), 192–210 (2002)CrossRefGoogle Scholar
  2. 2.
    Beyersdorff, D., Winkel, A., Bretschneider, P., Hamm, B.K., Loening, S.A., Taupitz, M.: Initial results of MRI-guided prostate biopsy using a biopsy device in a closed MR imager at 1.5T. In: The 88th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, p. 629 (2002)Google Scholar
  3. 3.
    D’Amico, A.V., Cormack, R., Tempany, C.M., Kumar, S., Topulos, G., Kooy, H.M., Coleman, C.N.: Realtime magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 42(3), 507–515 (1998)CrossRefGoogle Scholar
  4. 4.
    D’Amico, A.V., Cormack, R., Tempany, C.M., Kumar, S., Topulos, G., Kooy, H.M., Coleman, C.N.: Realtime magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer. Int.J. Radiat. Oncol. Biol. Phys. 42(3), 507–515 (1998)CrossRefGoogle Scholar
  5. 5.
    Derbyshire, J.A., Wright, G.A., Henkelman, R.M., Hinks, R.S.: Dynamic scanplane tracking using MR position monitoring. J. Magn. Reson Imaging 8(4), 924–932 (1998)CrossRefGoogle Scholar
  6. 6.
    Fichtinger, G., Krieger, A., Susil, R.C., Tanacs, A., Whitcomb, L.L., Atalar, E.: Transrectal prostate biopsy inside closed MRI scanner with remote actuation, under real-time image guidance. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 91–98. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gering, D.T., Nabavi, A., Kikinis, R., Hata, N., O’Donnell, L.J., Grimson, W.E., Jolesz, F.A., Black, P.M., Wells 3rd, W.M.: An integrated visulalization system for surgical planning and guidance using image fusion and an open MR. J. Magn. Reson. Imaging 13(6), 967–975 (2001)CrossRefGoogle Scholar
  8. 8.
    Jemal, A., Murray, T., Samuels, A., Ghafoor, A., Ward, E., Thun, M.: Cancer statistics. CA Cancer J. Clin. 53, 5–26 (2003)CrossRefGoogle Scholar
  9. 9.
    Presti Jr., J.C.: Prostate cancer: assessment of risk using digital rectal examination, tumor grade, prostate-specific antigen, and system biopsy. Radiol. Clin. North Am. 38(1), 49–58 (2000)CrossRefGoogle Scholar
  10. 10.
    Krieger, A., Susil, R.C., Fichtinger, G., Atalar, E., Whitcomb, L.L.: Design of anovel MRI compatible manipulator for image guided prostate intervention. In: IEEE 2004 International Conference on Robotics and Automation (2004) (accepted)Google Scholar
  11. 11.
    Nederveen, A.J., Lagendijk, J.J., Hofman, P.: Feasibility of automatic marker detection with an a-si flat-panel imager. Phys. Med. Biol. 46(4), 1219–1230 (2001)CrossRefGoogle Scholar
  12. 12.
    Roehl, K.A., Antenor, J.A., Catalona, W.J.: Serial biopsy results in prostate cancer screening study. J. Urol 167, 1156–1161 (2002)CrossRefGoogle Scholar
  13. 13.
    Susil, R.C., Camphausen, K., Choyke, P., Atalar, E., Coleman, C., Menard, C.: A system for transperineal prostate biopsy and HDR brachytherapy under 1.5T MRI guidance techniques and clinical experience. In: The 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Chicago, p. 644 (2003)Google Scholar
  14. 14.
    Susil, R.C., Krieger, A., Derbyshire, J.A., Tanacs, A., Whitcomb, L.L., McVeigh, E.R., Fichtinger, G., Atalar, E.: A system for MRI guided diagnostic and therapeutic prostate interventions. Journal of Radiology 228, 886–894 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Emese Balogh
    • 1
    • 6
  • Anton Deguet
    • 1
  • Robert C. Susil
    • 2
  • Axel Krieger
    • 3
  • Anand Viswanathan
    • 1
  • Cynthia Ménard
    • 4
  • Jonathan A. Coleman
    • 5
  • Gabor Fichtinger
    • 1
    • 3
  1. 1.Engineering Research CenterJohns Hopkins UniversityBaltimoreUSA
  2. 2.Dept. of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Dept. of RadiologyJohns Hopkins UniversityBaltimoreUSA
  4. 4.Urologic Oncology BranchNCI, National Institutes of HealthBethesda
  5. 5.Radiation Oncology BranchNCI, National Institutes of HealthBethesda
  6. 6.Dept. of InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations