Advertisement

MARGE Project: Design, Modeling and Control of Assistive Devices for Minimally Invasive Surgery

  • Etienne Dombre
  • Micaël Michelin
  • François Pierrot
  • Philippe Poignet
  • Philippe Bidaud
  • Guillaume Morel
  • Tobias Ortmaier
  • Damien Sallé
  • Nabil Zemiti
  • Philippe Gravez
  • Mourad Karouia
  • Nicolas Bonnet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

MARGE is a joint project in the framework of the interdisciplinary national program in Robotics, called ROBEA, launched by the French National Research Center (CNRS) in 2001. The focus is on the development of design methodologies and on the control of high mobility and dexterity assistive devices for complex gesture assistance in minimally invasive surgery, especially for coronary artery bypass grafting. This paper presents the main results of this two-year project.

Keywords

Coronary Artery Bypass Grafting Minimally Invasive Surgery Assistive Device Shape Memory Alloy Wire Penetration Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Dombre, E., et al.: Projet MARGE: Modélisation, Apprentissage et Reproduction du Geste Chirurgical. In: Proc. Journées Robea, Toulouse, France, pp. 17–25 (2004)Google Scholar
  2. 2.
  3. 3.
    Sallé, D., Bidaud, P., Morel, G.: Optimal Design of High Dexterity Modular MIS Instrument for Coronary Artery Bypass Grafting. In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), New Orleans, USA, pp. 1276–1281 (2004)Google Scholar
  4. 4.
    Rininsland, H.: ARTEMIS: a Telemanipulator for Cardiac Surgery. European J. of Cardio-Thoracic Surgery 16(2), S106–S111 (1999)CrossRefGoogle Scholar
  5. 5.
    Cavusoglu, M.C., Williams, W., Tendick, F., Sastry, S.S.: Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications. In: Proc. 39th Allerton Conf. on Communication, Control and Computing, Monticello, USA (2001)Google Scholar
  6. 6.
    Krupa, A., Doignon, C., Gangloff, J., de Mathelin, M., Soler, L., Morel, G.: Towards Semi-autonomy in Laparoscopic Surgery Through Vision and Force Feedback Control. In: Proc. Int. Symp. on Experimental Robotics, ISER 2000, Waikiki, USA, pp. 189–198 (2000)Google Scholar
  7. 7.
    Michelin, M., Poignet, P., Dombre, E.: Geometrical Control Approaches for Minimally Invasive Surgery. In: Proc. Workshop on Medical Robotics Navigation and Visualization (MRNV), Remagen, Germany (2004) (to appear)Google Scholar
  8. 8.
    Michelin, M., Poignet, P., Dombre, E.: Dynamic Task / Posture Decoupling for Minimally Invasive Surgery Motions. In: 9th Int. Symp. on Experimental Robotics (ISER), Singapore (2004) (Submitted)Google Scholar
  9. 9.
    Zemiti, N., Ortmaier, J., Vitrani, M.-A., Morel, G.: A Force-Controlled Laparoscopic Robot Without Distal Force Sensing. In: 9th Int. Symp. on Experimental Robotics (ISER), Singapore (2004) (Submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Etienne Dombre
    • 1
  • Micaël Michelin
    • 1
  • François Pierrot
    • 1
  • Philippe Poignet
    • 1
  • Philippe Bidaud
    • 2
  • Guillaume Morel
    • 2
  • Tobias Ortmaier
    • 2
  • Damien Sallé
    • 2
  • Nabil Zemiti
    • 2
  • Philippe Gravez
    • 3
  • Mourad Karouia
    • 4
  • Nicolas Bonnet
    • 4
  1. 1.LIRMMMontpellier Cedex 5France
  2. 2.LRPFontenay-aux-Roses CedexFrance
  3. 3.CEA/SRSIFontenay-aux-Roses CedexFrance
  4. 4.Groupe Hospitalier Pitié SalpêtrièreParis Cedex 13France

Personalised recommendations