Skip to main content

Automated Classification of Galaxy Images

  • Conference paper
  • First Online:
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3215))

Abstract

In this paper we present an experimental study of the performance of three machine learning algorithms applied to the difficult problem of galaxy classification. We use the Naive Bayes classifier, the rule-induction algorithm C4.5 and a recently introduced classifier named random forest (RF). We first employ image processing to standardize the images, eliminating the effects of orientation and scale, then perform principal component analysis to reduce the dimensionality of the data, and finally, classify the galaxy images. Our experiments show that RF obtains the best results considering three, five and seven galaxy types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ball, N.: Morphological Classification of Galaxies Using Artificial Neural Networks. Master’s thesis, University of Sussex (2002)

    Google Scholar 

  2. Bazell, D., Aha, D.W.: Ensembles of Classifiers for Morphological Galaxy Classification. The Astrophysical Journal 548, 219–233 (2001)

    Article  Google Scholar 

  3. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. De la Calleja, J., Fuentes, O.: Machine learning and image analysis for morphological galaxy classification. Monthly Notices of the Royal Astronomical Society 349, 87–93 (2004)

    Article  Google Scholar 

  5. Dietterich, T.G.: Machine Learning Research: Four Current Directions. AI Magazine 18(4), 97–136 (1997)

    Google Scholar 

  6. Goderya, S.N., Lolling, S.M.: Morphological Classification of Galaxies using Computer Vision and ANNs. Astrophysics and Space Science 279(377) (2002)

    Google Scholar 

  7. Lahav, O.: Artificial neural networks as a tool for galaxy classification. In: Data Analysis in Astronomy, Erice, Italy (1996)

    Google Scholar 

  8. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  9. Madgwick, D.S.: Correlating galaxy morphologies and spectra in the 2dF Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical Society 338, 197–207 (2003)

    Article  Google Scholar 

  10. Naim, A., Lahav, O., Sodré Jr., L., Storrie-Lombardi, M.C.: Automated morphological classification of APM galaxies by supervised artificial neural networks. Monthly Notices of the Royal Astronomical Society 275(567) (1995)

    Google Scholar 

  11. Owens, E.A., Griffiths, R.E., Ratnatunga, K.U.: Using Oblique Decision Trees for the Morphological Classification of Galaxies. Monthly Notices of the Royal Astronomical Society 281(153) (1996)

    Google Scholar 

  12. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  13. Storrie-Lombardi, M.C., Lahav, O., Sodré, L., Storrie-Lombardi, L.J.: Morphological Classification of Galaxies by Artificial Neural Networks. Monthly Notices of the Royal Astronomical Society 259(8) (1992)

    Google Scholar 

  14. Turk, M.A., Pentland, A.P.: Face Recognition Using Eigenfaces. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de la Calleja, J., Fuentes, O. (2004). Automated Classification of Galaxy Images. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30134-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30134-9_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23205-6

  • Online ISBN: 978-3-540-30134-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics