Skip to main content

Prediction of Plasma Membrane Spanning Region and Topology Using Hidden Markov Model and Neural Network

  • Conference paper
  • First Online:
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3215))

Abstract

Unlike bacteria, which generally consist of a single intracellular compartment surrounded by a plasma membrane, a eukaryotic cell is elaborately subdivided into functionally distinct, membrane-enclosed intracellular compartments that are composed of the nucleus, mitochondria, and chloroplast. Although transmembrane spanning region and topology prediction tools are available, such software cannot distinguish plasma membrane from intracellular membrane. Moreover, the presence of signal peptide, which has information of intracellular targeting, complicates the transmembrane topology prediction because the hydrophobic composite of signal peptide is considered to be a putative transmembrane region. By immediately detecting a signal peptide and transmembrane topology in a query sequence, we can discriminate plasma membrane spanning proteins from intracellular membrane spanning proteins. Moreover, the prediction performance significantly increases when signal peptide is contained in queries. Transmembrane region prediction algorithm based on the Hidden Markov Model and ER signal peptide detection architecture for neural networks has been used for the actual implementation of the software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  Google Scholar 

  2. Tusnady, G.E., Simon, I.: The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–850 (2001)

    Article  Google Scholar 

  3. Moller, S., Croning, M.D., Apweiler, R.: Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001)

    Article  Google Scholar 

  4. Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G.: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997)

    Article  Google Scholar 

  5. Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000)

    Article  Google Scholar 

  6. Reinhardt, A., Hubbard, T.: Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res. 26, 2230–2236 (1998)

    Article  Google Scholar 

  7. Park, K.J., Kanehisa, M.: Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics 19, 1656–1663 (2003)

    Article  Google Scholar 

  8. Nakashima, H., Nishikawa, K.: Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol. 238, 54–61 (1994)

    Article  Google Scholar 

  9. Lao, D.M., Arai, M., Ikeda, M., Shimizu, T.: The presence of signal peptide significantly affects transmembrane topology prediction. Bioinformatics 18, 1562–1566 (2002)

    Article  Google Scholar 

  10. Moller, S., Kriventseva, E.V., Apweiler, R.: A collection of well characterised integral membrane proteins. Bioinformatics 16, 1159–1160 (2000)

    Article  Google Scholar 

  11. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  12. Ikeda, M., Arai, M., Okuno, T., Shimizu, T.: TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Res. 31, 406–409 (2003)

    Article  Google Scholar 

  13. Nilsson, J., Persson, B., von Heijne, G.: Consensus predictions of membrane protein topology. FEBS Lett. 486, 267–269 (2000)

    Article  Google Scholar 

  14. Martelli, P.L., Fariselli, P., Krogh, A., Casadio, R.: A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics (suppl. 1), S46–S53 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, M.K., Park, H.S., Park, S.H. (2004). Prediction of Plasma Membrane Spanning Region and Topology Using Hidden Markov Model and Neural Network. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30134-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30134-9_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23205-6

  • Online ISBN: 978-3-540-30134-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics