Skip to main content

Towards Cortex Sized Artificial Nervous Systems

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3213))

Abstract

We characterize the size and complexity of the mammalian cortices of human, macaque, cat, rat, and mouse. We map the cortical structure onto a Bayesian confidence propagating neural network (BCPNN). An architectural structure for the implementation of the BCPNN based on hypercolumnar modules is suggested. The bandwidth, memory, and computational demands for real-time operation of the system are calculated and simulated. It is concluded that the limiting factor is the computational and not the communication requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lansner, A., Fransén, E., Sandberg, A.: Cell assembly dynamics in detailed and abstract attractor models of cortical associative memory. Theory in Biosciences 122, 19–36 (2003)

    Google Scholar 

  2. Fransén, E., Lansner, A.: A model of cortical associative memory based on a horizontal network of connected columns. Network: Comp. in Neural Systems 9(2), 235–264 (1998)

    Article  MATH  Google Scholar 

  3. Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University Press, New York (1998)

    Google Scholar 

  4. Palm, G.: Neural Assemblies: An Alternative Approach to Artificial Intelligence. In: Braitenberg, V. (ed.) Studies of Brain Function, vol. 7, Springer, New York (1982)

    Google Scholar 

  5. Cossart, R., Aronov, D., Yuste, R.: Attractor dynamics of network UP states in the neocortex. Nature 423(6937), 283–288 (2003)

    Article  Google Scholar 

  6. Shu, Y., Hasenstaub, A., Mccormick, D.A.: Turning on and off recurrent balanced cortical activity. Nature 423(6937), 288–293 (2003)

    Article  Google Scholar 

  7. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. In: Stryker, M. (ed.), Oxford University Press, New York (1999)

    Google Scholar 

  8. Fuster, J.M.: Memory in the Cerebral Cortex (1995)

    Google Scholar 

  9. Rockel, A.J., Hiorns, R.W., Powell, T.P.S.: The Basic Uniformity in Structure of the Neocortex. Brain 103, 221–244 (1980)

    Article  Google Scholar 

  10. Braitenberg, V., Schuz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, New York (1998)

    Google Scholar 

  11. Hofman, M.A.: Size and Shape of the Cerebral Cortex in Mammals: I. The Cortical Surface. Brain Behav. Evol. 27, 28–40 (1985)

    Article  Google Scholar 

  12. Beaulieu, C., et al.: Quantitative Distribution of GABA-immunopositive and -immunonegative Neurons and Synapses in the Monkey Striate Cortex (Area 17). Cerebral Cortex 2(4), 295–309 (1992)

    Article  MathSciNet  Google Scholar 

  13. Beaulieu, C., Colonnier, M.: Number and Size of Neurons and Synapses in the Motor Cortex of Cats Raised in Different Environmental Complexities. J. Comp. Neurol. 289, 178–187 (1989)

    Article  Google Scholar 

  14. Pakkenberg, B., et al.: Aging and the human neocortex. Exper. Gerontol. 38, 95–99 (2003)

    Article  Google Scholar 

  15. Dombrowski, S., Hilgetag, C., Barbas, H.: Quantitative Architecture Distinguishes Prefrontal Cortical Systems in the Rhesus Monkey. Cer. Cortex 11(10), 975–988 (2001)

    Article  Google Scholar 

  16. Thomson, A.M., Bannister, A.P.: Interlaminar Connections in the Neocortex. Cerebral Cortex 13(1), 5–14 (2003)

    Article  Google Scholar 

  17. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  18. Buxhoeveden, D.P., Casanova, M.F.: The minicolumn hypothesis in neuroscience. Brain 125(5), 935–951 (2002)

    Article  Google Scholar 

  19. Buxhoeveden, D., et al.: Quantitative analysis of cell columns in the cerebral cortex. Journal of neuroscience methods 97, 7–17 (2000)

    Article  Google Scholar 

  20. Mountcastle, V.B.: Modality and Topographic Properties of Single Neurons of Cat’s Somatic Sensory Cortex. Journal of neurophysiology 20, 408–434 (1957)

    Google Scholar 

  21. Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B. 198, 1–59 (1977)

    Article  Google Scholar 

  22. Leise, E.M.: Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates. Brain Research Reviews 15, 1–23 (1990)

    Article  Google Scholar 

  23. Johansson, C., Lansner, A.: Towards Cortex Sized Attractor ANN. In: Bio-ADIT 2004, Lausanne, Switzerland (2004)

    Google Scholar 

  24. Cürüklü, B., Lansner, A.: An Abstract Model of a Cortical Hypercolumn. In: Proc. of the 9th International Conference on Neural Information Processing, IEEE, Singapore (2002)

    Google Scholar 

  25. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  26. Sandberg, A., et al.: A Bayesian attractor network with incremental learning. Network: Computation in Neural Systems 13(2), 179–194 (2002)

    MATH  MathSciNet  Google Scholar 

  27. Johansson, C., Lansner, A.: BCPNN Implemented with Fixed-Point Arithmetic, TRITA-NA-P0403, Nada, KTH: Stockholm (2004)

    Google Scholar 

  28. Bailey, J., Hammerstrom, D.: Why VLSI Implementations of Associative VLCNs Require Connection Multiplexing. In: Proc. of Internat. Conf. on Neural Networks, San Diego (1988)

    Google Scholar 

  29. Deiss, S.R., Douglas, R.J., Whatley, A.M.: A Pulse-Coded Communication Infrastructure for Neuromorphic Systems. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 157–178. MIT Press, Cambridge (1999)

    Google Scholar 

  30. Jonsson, J.: Pilot Study of a Parallel Implementation of a Bayesian Confidence Propagating Neural Network, TRITA-NA-E03158, Nada: Stockholm (2003)

    Google Scholar 

  31. Johansson, C., Lansner, A.: Mapping of the BCPNN onto Cluster Computers, TRITA-NA-P0305, Nada, KTH: Stockholm (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johansson, C., Lansner, A. (2004). Towards Cortex Sized Artificial Nervous Systems. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_129

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30132-5_129

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23318-3

  • Online ISBN: 978-3-540-30132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics