Advertisement

Exploring Area/Delay Tradeoffs in an AES FPGA Implementation

  • Joseph Zambreno
  • David Nguyen
  • Alok Choudhary
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3203)

Abstract

Field-Programmable Gate Arrays (FPGAs) have lately become a popular target for implementing cryptographic block ciphers, as a well-designed FPGA solution can combine some of the algorithmic flexibility and cost efficiency of an equivalent software implementation with throughputs that are comparable to custom ASIC designs. The recently selected Advanced Encryption Standard (AES) is slowly replacing older ciphers as the building block of choice for secure systems and is well suited to an FPGA implementation. In this paper we explore the design decisions that lead to area/delay tradeoffs in a single-core AES FPGA implementation. This work provides a more thorough description of the defining AES hardware characteristics than is currently available in the research literature, along with implementation results that are pareto optimal in terms of throughput, latency, and area efficiency.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stallings, W.: Cryptography and Network Security. Prentice Hall, Englewood Cliffs (2003)Google Scholar
  2. 2.
    Elbirt, A., Yip, W., Chetwynd, B., Paar, C.: An FPGA implementation and performance evaluation of the AES block cipher candidate algorithm finalists. In: Proc. of the Third Advanced Encryption Standard (AES3) Candidate Conference, pp. 13–27 (2000)Google Scholar
  3. 3.
    Saggese, G.P., Mazzeo, A., Mazzoca, N., Strollo, A.G.M.: An FPGA-based performance analysis of the unrolling, tiling, and pipelining of the AES algorithm. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 292–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Kaps, J.-P., Paar, C.: Fast DES implementation for FPGAs and its application to a universal key-search machine. In: Proc. of the 5th Annual Workshop on Selected Areas in Cryptography (SAC), pp. 234–247 (1998)Google Scholar
  5. 5.
    Gonzalez, I., Lopez-Budeo, S., Gomez, F.J., Martinez, J.: Using partial reconfiguration in cryptographic applications: an implementation of the IDEA algorithm. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 194–203. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Järvinen, K.U., Tommiska, M.T., Skyttä, J.O.: A fully pipelined memoryless 17.8 Gbps AES-128 encryptor. In: Proc. of the Int’l Symposium on Field Programmable Gate Arrays (FPGA), pp. 207–215 (2003)Google Scholar
  7. 7.
    Helion Technology, Inc. AES Xilinx FPGA core data sheet (2003), available at http://www.heliontech.com
  8. 8.
    Wollinger, T., Paar, C.: How secure are FPGAs in cryptographic applications? In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 91–100. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Dandalis, A., Prasanna, V., Rolim, J.: An adaptive cryptographic engine for IPSec architectures. In: Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 132–144 (2000)Google Scholar
  10. 10.
    Daeman, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 288–296. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    National Institute of Standards and Technology. Specification for the Advanced Encryption Standard (AES). FIPS PUB 197 (2001), available at http://csrc.nist.gov
  12. 12.
    Xilinx, Inc. Virtex-II complete data sheet (2003), available at http://www.xilinx.com
  13. 13.
    Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s fully pipelined AES processor on FPGA. In: Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM (2004)Google Scholar
  14. 14.
    Lipmaa, H.: AES implementation speed comparison (2003), available at http://www.tcs.hut.fi/~aes/rijndael.html
  15. 15.
    Hodjat, A., Verbauwhede, I.: Minimum area cost for a 30 to 70 Gbits/s AES processor. In: Proc. of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 83–88 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joseph Zambreno
    • 1
  • David Nguyen
    • 1
  • Alok Choudhary
    • 1
  1. 1.Department of Electrical and Computer EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations