Advertisement

A Steerable Complex Wavelet Construction and Its Implementation on FPGA

  • C. -S. Bouganis
  • P. Y. K. Cheung
  • J. Ng
  • A. A. Bharath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3203)

Abstract

This work addresses the design of a novel complex steerable wavelet construction and its implementation on reconfigurable logic. The wavelet decomposition uses pairs of bandpass filters that display symmetry and antisymmetry about a steerable axis of orientation. The design is targeted for implementation in hardware, thus one of the desired properties is the small number of unique kernels. A detailed description of the implementation of the design in hardware is given. Moreover, results regarding the speed of our design compared to a software implementation, and the error in the filter responses due to fixed point representation, are reported. To show the applicability of the design to real life situations, a corner detection algorithm is illustrated.

Keywords

Hardware Implementation External Memory Memory Bank Corner Detection Radial Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing 50(11) (November 2002)Google Scholar
  2. 2.
    Kingsbury, N.: Image processing with complex wavelets. Philosophical Transactions Of The Royal Society Of London - Series A 357(1760), 2543–2560 (2002)CrossRefGoogle Scholar
  3. 3.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Inteligence 13(9), 891–906 (1991)CrossRefGoogle Scholar
  4. 4.
    Lindeberg, T.: Principles for automatic scale selection. In: Handbook on Computer Vision and Applications, vol. 2, pp. 239–274. Academic Press, London (1999)Google Scholar
  5. 5.
    Nibouche, M., Bouridane, A., Crookes, D., Nibouche, O.: An FPGA-based wavelet transforms coprocessor. In: IEEE International Conference on Image Processing, vol. 3, pp. 194–197 (2001)Google Scholar
  6. 6.
    Bellows, P., Hutchings, B.: Designing run-time reconfigurable systems with JHDL. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 28(1-2), 29–45 (2001)zbMATHGoogle Scholar
  7. 7.
    Folson, T.C., Pinter, R.B.: Primitive features by steering, quadrature and scale. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1161–1173 (1998)CrossRefGoogle Scholar
  8. 8.
    Constantinides, G.A., Cheung, P.Y.K., Luk, W.: Wordlength Optimization for Linear Digital Signal Processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(10) (October 2003)Google Scholar
  9. 9.
    Page, I., Luk, W.: Compiling occam into FPGAs. In: Will Moore and Wayne Luk (Eds) ‘FPGAs’, pp. 271–283, Abingdon EE&CS books (1991)Google Scholar
  10. 10.
    Ng, J., Bharath, A.A.: Steering in Scale Space to Optimally Detect Image Structures. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 482–494. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
  12. 12.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. -S. Bouganis
    • 1
  • P. Y. K. Cheung
    • 1
  • J. Ng
    • 2
  • A. A. Bharath
    • 2
  1. 1.Department of Electrical & Electronic EngineeringImperial CollegeLondonU.K
  2. 2.Department of BioengineeringImperial CollegeLondonU.K

Personalised recommendations