Advertisement

The Partition into Hypercontexts Problem for Hyperreconfigurable Architectures

  • Sebastian Lange
  • Martin Middendorf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3203)

Abstract

Hyperreconfigurable architectures adapt their reconfiguration abilities during run time in order to achieve fast dynamic reconfiguration. Models for such architectures have been proposed that change their ability for reconfiguration during hyperreconfiguration steps and in ordinary reconfiguration steps reconfigure the actual contexts for a computation within the limits that have been set by the last hyperreconfiguration step. In this paper we study algorithmic aspects of how to optimally decide what hyperreconfiguration steps should be done during a computation in order to minimize the total time necessary for hyperreconfiguration and ordinary reconfiguration. It is shown that the general problem is NP-hard but fast polynomial time algorithms are given to solve this problem on different types of hyperreconfigurable architectures. These include newly introduced architectures that use a cache to store hypercontexts. We define an example hyperreconfigurable architecture and illustrate the introduced concepts for three application problems.

Keywords

Cache Line Actual Context Context Switching Algorithmic Aspect Equal Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolotski, M., DeHon, A., Knight Jr., T.F.: Unifying FPGAs and SIMD Arrays. In: Proc. FPGA 1994 – 2nd International ACM/SIGDAWorkshop on FPGAs, pp. 1–10 (1994)Google Scholar
  2. 2.
    Bondalapati, K., Prasanna, V.K.: Reconfigurable Computing: Architectures, Models and Algorithms. In: Proc. Reconfigurable Architectures Workshop, IPPS (1997)Google Scholar
  3. 3.
    Compton, K., Hauck, S.: Configurable Computing: A Survey of Systems and Software. ACM Computing Surveys 34(2), 171–210 (2002)CrossRefGoogle Scholar
  4. 4.
    Dandalis, A., Prasanna, V.K.: Configuration Compression for FPGA-based Embedded Systems. In: Proc. ACM Int. Symposium on Field-Programmable Gate Arrays, pp. 173–182 (2001)Google Scholar
  5. 5.
    Haubelt, C., Teich, J., Richter, K., Ernst, R.: System Design for Flexibility. In: Proc. 2002 Design, Automation and Test in Europe, pp. 854–861 (2002)Google Scholar
  6. 6.
    Hauck, S., Li, Z., Rolim, J.D.P.: Configuration Compression for the Xilinx XC6200 FPGA. IEEE Trans. on CAD of Integrated Circuits and Systems 8, 1107–1113 (1999)CrossRefGoogle Scholar
  7. 7.
    Kannan, P., Balachandran, S., Bhatia, D.: On Metrics for Comparing Routability Estimation Methods for FPGAs. In: Proc. 39th Design Automation Conference, pp. 70–75 (2002)Google Scholar
  8. 8.
    Koester, M., Teich, J. (Self-)reconfigurable Finite State Machines: Theory and Implementation. In: Proc. 2002 Design, Automation and Test in Europe, pp. 559–566 (2002)Google Scholar
  9. 9.
    Lange, S., Middendorf, M.: Hyperreconfigurable Architectures for Fast Runtime Reconfiguration. In: Proceedings of 2004 IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2004), Napa Valley, USA (2004) (to appear)Google Scholar
  10. 10.
    Lange, S., Middendorf, M.: Models and Reconfiguration Problems for Multi Task Hyperreconfigurable Architectures. In: Proc. RAW 2004, Santa Fe (2004) (to appear)Google Scholar
  11. 11.
    Lee, K.K., Wong, D.F.: Incremental Reconfiguration of Multi-FPGA Systems. In: Proc. Tenth ACM International Symposium on Field Programmable Gate Arrays, pp. 206–213 (2002)Google Scholar
  12. 12.
    Ling, X.P., Amano, H.: WASMII: a Data Driven Computer on a Virtual Hardware. In: Proc. of the IEEE Workshop on FPGAs for Custom Computing Machines, pp. 33–42 (1993)Google Scholar
  13. 13.
    Lee, T.-M., Henkel, J., Wolf, W.: Dynamic Runtime Re-Scheduling Allowing Multiple Implementations of a Task for Platform-Based Designs. In: Proc. 2002 Design, Automation and Test in Europe, pp. 296–301 (2002)Google Scholar
  14. 14.
    Puttegowda, K., Lehn, D.I., Park, J.H., Athanas, P., Jones, M.: Context Switching in a Run-Time Reconfigurable System. The Journal of Supercomputing 26(3), 239–257 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Sidhu, R.P.S., Wadhwa, S., Mei, A., Prasanna, V.K.: A Self-Reconfigurable Gate Array Architecture. In: Grünbacher, H., Hartenstein, R.W. (eds.) FPL 2000. LNCS, vol. 1896, pp. 106–120. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Teich, M., Fekete, S., Schepers, J.: Compile-Time Optimization of Dynamic Hardware Reconfigurations. In: Proc. Int. Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA 1999), Las Vegas, U.S.A (1999)Google Scholar
  17. 17.
    Wadhwa, S., Dandalis, A.: Efficient Self-Reconfigurable Implementations Using On-chip Memory. In: Grünbacher, H., Hartenstein, R.W. (eds.) FPL 2000. LNCS, vol. 1896, pp. 443–448. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sebastian Lange
    • 1
  • Martin Middendorf
    • 1
  1. 1.Parallel Computing and Complex Systems Group, Department of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations