Advertisement

On Optimal Irregular Switch Box Designs

  • Hongbing Fan
  • Yu-Liang Wu
  • Chak-Chung Cheung
  • Jiping Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3203)

Abstract

In this paper, we develop a unified theory in analyzing optimal switch box design problems, particularly for the unsolved irregular cases, where different pin counts are allowed on different sides. The results drawn from our system of linear Diophantine equations based formulation turn out to be general. We prove that the divide-and-conquer (reduction) design methodology can also be applied to the irregular cases. Namely, an optimal arbitrarily large irregular or regular switch box can be obtained by combining small prime switch boxes, which largely reduces the design complexity. We revise the known VPR router for our experiments and show that the design optimality of switch boxes does pay off.

Keywords

Configurable computing on-chip network FPGA switch box 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Betz, V., Rose, J.: Directional bias and non-uniformity in FPGA global routing architectures. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, Washington, November 10-14, pp. 652–659. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  2. 2.
    Betz, V., Rose, J.: A New Packing, Placement and Routing Tool for FPGA Research. In: Seventh International Workshop on Field-Programmable Logic and Applications, pp. 213–222 (1997)Google Scholar
  3. 3.
    Betz, V., Rose, J., Marquardt, A.: Architecure and CAD for Deep-Submicron FPGAs. Kluwer-Academic Publisher, Boston (1999)Google Scholar
  4. 4.
    Brown, S., Francis, R., Rose, J., Vranesic, Z.: Field Programmable Gate Arrays. Kluwer-Academic Publisher, Boston (1992)zbMATHGoogle Scholar
  5. 5.
    Chang, Y.-W., Wong, D.F., Wong, C.K.: Universal switch modules for FPGA design. ACM Transactions on Design Automation of Electronic Systems 1(1), 80–101 (1996)CrossRefGoogle Scholar
  6. 6.
    Contejean, E., Devie, H.: An efficient incremental algorithm for solving systems of linear diophantine equations. Inform. and Comput. 113(1), 143–172 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fan, H., Liu, J., Wu, Y.L.: General models and a reduction design technique for FPGA switch box designs. IEEE Transactions on Computers 52(1), 21–30 (2003)CrossRefGoogle Scholar
  8. 8.
    Fan, H., Liu, J., Wu, Y.L., Cheung, C.C.: On optimum switch box designs for 2-D FPGAs. In: Proceedings of the 2001 Design Automation Conference (DAC 2001), June 18-22, pp. 203–208. ACM Press, New York (2001)Google Scholar
  9. 9.
    Fan, H., Liu, J., Wu, Y.L., Wong, C.K.: Reduction design for generic universal switch blocks. ACM Transactions on Design Automation of Electronic Systems 7(4), 526–546 (2002)CrossRefGoogle Scholar
  10. 10.
    Hallschmid, P., Wilton, S.: Detailed routing architectures for embedded programmable logic IP cores. In: The ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, February 2001, pp. 69–74 (2001)Google Scholar
  11. 11.
    Nakamura, S., Masson, G.M.: Lower bounds on crosspoints in concentrators. IEEE Transactions on Computers 31, 1173–1179 (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Rose, J., Brown, S.: Flexibility of interconnection structures for fieldprogrammable gate arrays. IEEE Journal of Solid State Circuits 26(3), 277–282 (1991)CrossRefGoogle Scholar
  13. 13.
    Shyu, M., Wu, G.M., Chang, Y.D., Chang, Y.W.: Generic Universal Switch Blocks. IEEE Trans. on Computers, 348–359 (April 2000)Google Scholar
  14. 14.
    Wilton, S.J.: Architecture and Algorithms for Field-Programmable Gate Arrays with Embedded Memory. PhD thesis, University of Toronto (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hongbing Fan
    • 1
  • Yu-Liang Wu
    • 2
  • Chak-Chung Cheung
    • 3
  • Jiping Liu
    • 1
  1. 1.The University of LethbridgeLethbridgeCanada
  2. 2.The Chinese University of Hong KongShatin, N.T., Hong Kong
  3. 3.Department of ComputingImperial College LondonUnited Kingdom

Personalised recommendations