Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Conference on Machine Learning

ECML 2004: Machine Learning: ECML 2004 pp 134–143Cite as

  1. Home
  2. Machine Learning: ECML 2004
  3. Conference paper
Adaptive Online Time Allocation to Search Algorithms

Adaptive Online Time Allocation to Search Algorithms

  • Matteo Gagliolo22,
  • Viktor Zhumatiy22 &
  • Jürgen Schmidhuber22 
  • Conference paper
  • 3596 Accesses

  • 13 Citations

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3201)

Abstract

Given is a search problem or a sequence of search problems, as well as a set of potentially useful search algorithms. We propose a general framework for online allocation of computation time to search algorithms based on experience with their performance so far. In an example instantiation, we use simple linear extrapolation of performance for allocating time to various simultaneously running genetic algorithms characterized by different parameter values. Despite the large number of searchers tested in parallel, on various tasks this rather general approach compares favorably to a more specialized state-of-the-art heuristic; in one case it is nearly two orders of magnitude faster.

Download conference paper PDF

References

  1. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  2. Freisleben, B., Merz, P.: New Genetic Local Search Operators for the Traveling Salesman Problem. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 890–900. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  3. Fürnkranz, J., Petrak, J., Brazdil, P., Soares, C.: On the use of fast subsampling estimates for algorithm recommendation. Technical Report TR-2002-36, Ö sterreichisches Forschungsinstitut für Artificial Intelligence, Wien (2002)

    Google Scholar 

  4. Gardner Jr., E.S.: Exponential smoothing: the state of the art. Journal of Forecasting 4, 1–28 (1985)

    CrossRef  Google Scholar 

  5. Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, vol. 2, p. 1867. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  7. Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Walsh, T., Gent, I.P., Maaren, H.v. (eds.) SAT 2000, pp. 283–292. IOS press, Amsterdam (2000), http://www.satlib.org

    Google Scholar 

  8. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of AI research 4, 237–285 (1996)

    Google Scholar 

  9. Kalousis, A., Gama, J.a., Hilario, M.: On data and algorithms: Understanding inductive performance. Mach. Learn. 54(3), 275–312 (2004)

    CrossRef  MATH  Google Scholar 

  10. Moore, W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: Proceedings of the 11th International Conference on Machine Learning, pp. 190–198. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  11. Reinelt, G.: Tsplib 95, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95

  12. Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004); Short version in NIPS 15, pp. 1571–1578 (2003)

    CrossRef  MATH  Google Scholar 

  13. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

    CrossRef  MATH  Google Scholar 

  14. Solomonoff, R.J.: Progress in incremental machine learning. Technical Report IDSIA-16- 03, IDSIA (2003)

    Google Scholar 

  15. Wall, M.: GAlib, A C++ Genetic Algorithms Library., http://lancet.mit.edu/ga

Download references

Author information

Authors and Affiliations

  1. IDSIA, Galleria 2, 6928, Manno-Lugano, Switzerland

    Matteo Gagliolo, Viktor Zhumatiy & Jürgen Schmidhuber

Authors
  1. Matteo Gagliolo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Viktor Zhumatiy
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jürgen Schmidhuber
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. INSA-Lyon, LIRIS CNRS UMR5205, F-69621, Villeurbanne, France

    Jean-François Boulicaut

  2. Dipartimento di Informatica, Università degli Studi di Bari,  

    Floriana Esposito

  3. Pisa KDD Laboratory, ISTI - CNR, Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

    Fosca Giannotti

  4. Dipartimento di Informatica, Via F. Buonarroti 2, 56127, Pisa, Italy

    Dino Pedreschi

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gagliolo, M., Zhumatiy, V., Schmidhuber, J. (2004). Adaptive Online Time Allocation to Search Algorithms. In: Boulicaut, JF., Esposito, F., Giannotti, F., Pedreschi, D. (eds) Machine Learning: ECML 2004. ECML 2004. Lecture Notes in Computer Science(), vol 3201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30115-8_15

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-540-30115-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23105-9

  • Online ISBN: 978-3-540-30115-8

  • eBook Packages: Springer Book Archive

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.