Abstract
Given is a search problem or a sequence of search problems, as well as a set of potentially useful search algorithms. We propose a general framework for online allocation of computation time to search algorithms based on experience with their performance so far. In an example instantiation, we use simple linear extrapolation of performance for allocating time to various simultaneously running genetic algorithms characterized by different parameter values. Despite the large number of searchers tested in parallel, on various tasks this rather general approach compares favorably to a more specialized state-of-the-art heuristic; in one case it is nearly two orders of magnitude faster.
Chapter PDF
Similar content being viewed by others
References
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)
Freisleben, B., Merz, P.: New Genetic Local Search Operators for the Traveling Salesman Problem. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 890–900. Springer, Heidelberg (1996)
Fürnkranz, J., Petrak, J., Brazdil, P., Soares, C.: On the use of fast subsampling estimates for algorithm recommendation. Technical Report TR-2002-36, Ö sterreichisches Forschungsinstitut für Artificial Intelligence, Wien (2002)
Gardner Jr., E.S.: Exponential smoothing: the state of the art. Journal of Forecasting 4, 1–28 (1985)
Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, vol. 2, p. 1867. Morgan Kaufmann, San Francisco (1999)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Walsh, T., Gent, I.P., Maaren, H.v. (eds.) SAT 2000, pp. 283–292. IOS press, Amsterdam (2000), http://www.satlib.org
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of AI research 4, 237–285 (1996)
Kalousis, A., Gama, J.a., Hilario, M.: On data and algorithms: Understanding inductive performance. Mach. Learn. 54(3), 275–312 (2004)
Moore, W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: Proceedings of the 11th International Conference on Machine Learning, pp. 190–198. Morgan Kaufmann, San Francisco (1994)
Reinelt, G.: Tsplib 95, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004); Short version in NIPS 15, pp. 1571–1578 (2003)
Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)
Solomonoff, R.J.: Progress in incremental machine learning. Technical Report IDSIA-16- 03, IDSIA (2003)
Wall, M.: GAlib, A C++ Genetic Algorithms Library., http://lancet.mit.edu/ga
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gagliolo, M., Zhumatiy, V., Schmidhuber, J. (2004). Adaptive Online Time Allocation to Search Algorithms. In: Boulicaut, JF., Esposito, F., Giannotti, F., Pedreschi, D. (eds) Machine Learning: ECML 2004. ECML 2004. Lecture Notes in Computer Science(), vol 3201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30115-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-30115-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23105-9
Online ISBN: 978-3-540-30115-8
eBook Packages: Springer Book Archive