Skip to main content

Estimating the Number of Sources for Frequency-Domain Blind Source Separation

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

Blind source separation (BSS) for convolutive mixtures can be performed efficiently in the frequency domain, where independent component analysis (ICA) is applied separately in each frequency bin. To solve the permutation problem of frequency-domain BSS robustly, information regarding the number of sources is very important. This paper presents a method for estimating the number of sources from convolutive mixtures of sources. The new method estimates the power of each source or noise component by using ICA and a scaling technique to distinguish sources and noises. Also, a reverberant component can be identified by calculating the correlation of component envelopes. Experimental results for up to three sources show that the proposed method worked well in a reverberant condition whose reverberation time was 200 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haykin, S. (ed.): Unsupervised adaptive filtering. Blind source separation, vol. I. John Wiley & Sons, Chichester (2000)

    Google Scholar 

  2. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John Wiley & Sons, Chichester (2001)

    Book  Google Scholar 

  3. Rickard, S., Balan, R., Rosca, J.: Blind source separation based on space-timefrequency diversity. In: Proc. ICA 2003, pp. 493–498 (2003)

    Google Scholar 

  4. Matsuoka, K., Nakashima, S.: Minimal distortion principle for blind source separation. In: Proc. ICA 2001, pp. 722–727 (2001)

    Google Scholar 

  5. Douglas, S.C., Sun, X.: Convolutive blind separation of speech mixtures using the natural gradient. Speech Communication 39, 65–78 (2003)

    Article  Google Scholar 

  6. Smaragdis, P.: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22, 21–34 (1998)

    Article  Google Scholar 

  7. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 41, 1–24 (2001)

    Article  Google Scholar 

  8. Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. Speech and Audio Processing 12 (2004)

    Google Scholar 

  9. Mukai, R., Sawada, H., de la Kethulle, S., Araki, S., Makino, S.: Array geometry arrangement for frequency domain blind source separation. In: Proc. IWAENC 2003, pp. 219–222 (2003)

    Google Scholar 

  10. Sawada, H., Mukai, R., Araki, S., Makino, S.: Convolutive blind source separation for more than two sources in the frequency domain. In: Proc. ICASSP 2004 (2004)

    Google Scholar 

  11. Wax, M., Kailath, T.: Detection of signals by information theoretic criteria. IEEE Trans. Acoustics, Speech, and Signal Processing 33, 387–392 (1985)

    Article  MathSciNet  Google Scholar 

  12. Yamamoto, K., Asano, F., van Rooijen, W., Ling, E., Yamada, T., Kitawaki, N.: Estimation of the number of sound sources using support vector machines and its application to sound source separation. In: Proc. ICASSP 2003, pp. 485–488 (2003)

    Google Scholar 

  13. Winter, S., Sawada, H., Makino, S.: Geometrical interpretation of the PCA subspace method for overdetermined blind source separation. In: Proc. ICA 2003, pp. 775–780 (2003)

    Google Scholar 

  14. Sawada, H., Mukai, R., de la Kethulle, S., Araki, S., Makino, S.: Spectral smoothing for frequency-domain blind source separation. In: Proc. IWAENC 2003, pp. 311–314 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sawada, H., Winter, S., Mukai, R., Araki, S., Makino, S. (2004). Estimating the Number of Sources for Frequency-Domain Blind Source Separation. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics