Dimensionality Reduction in ICA and Rank-(R1,R2,...,RN) Reduction in Multilinear Algebra

  • Lieven De Lathauwer
  • Joos Vandewalle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3195)


We show that the best rank-(R 1,R 2,...,R N ) approximation in multilinear algebra is a powerful tool for dimensionality reduction in ICA schemes without prewhitening. We consider the application to different classes of ICA algorithms.


Dimensionality Reduction Blind Source Separation Matrix Anal Multilinear Algebra Orthogonal Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    André, T.F., Nowak, R.D., Van Veen, B.D.: Low-rank estimation of higher order statistics. IEEE Trans. Signal Processing. 45, 673–685 (1997)CrossRefGoogle Scholar
  2. 2.
    Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Trans. Signal Processing 45, 434–444 (1997)CrossRefGoogle Scholar
  3. 3.
    Bro, R.: PARAFAC. Tutorial & applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J.-F.: On the performance of orthogonal source separation algorithms. In: Proc. EUSIPCO 1994, Edinburgh, Scotland, U.K. pp. 776–779 (1994)Google Scholar
  5. 5.
    Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proc.-F 140, 362–370 (1994)Google Scholar
  6. 6.
    Cruces, S., Cichocki, A., De Lathauwer, L.: Thin QR and SVD factorizations for simultaneous blind signal extraction. In: Proc. EUSIPCO 2004, Vienna, Austria (2004)Google Scholar
  7. 7.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank- (R1,R2,., RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    De Lathauwer, L., Vandewalle, J.: Dimensionality reduction in higher-order signal processing and rank-(R1,R2,.,RN) reduction in multilinear algebra. Lin. Alg. Appl. (to appear)Google Scholar
  10. 10.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: Computation of the canonical decomposition by means of a simultaneous generalized Schur decompositition. SIAM J. Matrix Anal. Appl. (to appear)Google Scholar
  11. 11.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A prewhitening-induced bound on the identification error in independent component analysis, Tech. reportGoogle Scholar
  12. 12.
    De Lathauwer, L., Hoegaerts, L., Vandewalle, J.: A Grassmann-Rayleigh quotient iteration for dimensionality reduction in ICA. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 335–342. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  14. 14.
    Kroonenberg, P.M.: Three-mode principal component analysis. DSWO Press, Leiden (1983)Google Scholar
  15. 15.
    Leurgans, S.E., Ross, R.T., Abel, R.B.: A decomposition for three-way arrays. SIAM J. Matrix Anal. Appl. 14, 1064–1083 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pham, D.-T., Cardoso, J.-F.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Signal Processing. 49, 1837–1848 (2001)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pham, D.-T.: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. Appl. 22, 1136–1152 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Processing 50, 1545–1553 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lieven De Lathauwer
    • 1
    • 2
  • Joos Vandewalle
    • 2
  1. 1.ETIS (CNRS, ENSEA, UCP), UMR 8051Cergy-PontoiseFrance
  2. 2.E.E. Dept. (ESAT) – SCDK.U.LeuvenLeuvenBelgium

Personalised recommendations