Fisher Information in Source Separation Problems

  • Vincent Vigneron
  • Christian Jutten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3195)


The ability to estimate a specific set of parameters, without regard to an unknown set of other parameters that influence the measured data, or nuisance parameters, is described by the Fisher Information matrix (FIM), and its inverse the Cramer-Rao bound. In many adaptive gradient algorithm, the effect of multiplication by the latter is to make the update larger in directions in which the variations of the parameter θ have less statistical significance. In this paper, we examine the relationship between the Fisher information and the covariance of the estimation error under the scope of the source separation problem.


Independent Component Analysis Maximum Likelihood Estimator Fisher Information Independent Component Analysis Nuisance Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brémaud, P.: An introduction to probabilistic modeling. Undergraduate texts in mathematics. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    Comon, P.: Independent component analysis, a new concept. Signal Processing 36(3), 287–314 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dacunha-Castelle, D., Duflo, M.: Probabilités et statistiques, 2nd edn., Masson. Collection Mathématiques Appliquées pour la Maîtrise, vol. 2 (1993)Google Scholar
  4. 4.
    Hyvärinen, A., Karhunen, K., Oja, E.: Independent Component Analysis. Wiley, Chichester (2001)CrossRefGoogle Scholar
  5. 5.
    Pham, D.T., Garat, P., Jutten, C.: Separation of mixture of independent sources through a maximum likelihood approach. In: Vandewalle, J., Boite, R., Moonen, M., Oosterlinck, A. (eds.) Signal Processing VI,Proceeding EUSIPCO 1992, Bruxelles, Belgium, vol. 36(3), pp. 771–774. Elsevier, Amsterdam (1992)Google Scholar
  6. 6.
    Vigneron, V., Aubry, L., Jutten, C.: General conditions of stability in blind source separation models and score function selection. Neurocomputing (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vincent Vigneron
    • 1
  • Christian Jutten
    • 1
  1. 1.INPG-LIS CNRS UMR 5083Grenoble cedexFrance

Personalised recommendations