Framework of Constrained Matrix Gradient Flows

  • Gen Hori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3195)


The paper presents general formulas of constrained matrix gradient flows which can be used to derive algorithms for specific problems appeared in the aspects of ICA including joint diagonalization and joint SVD problems. Some previous and novel examples of constrained matrix gradient flows are derived using the general formulas.


General Formula Complex Matrice Initial Matrix Continuous Dynamical System Matrix Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brockett, R.W.: Linear Algebra Appl., vol. 146, pp. 79–91 (1991)Google Scholar
  2. 2.
    Brockett, R.W.: In: Green, R., Yau, S.-T. (eds.) Differential Geometry: Partial Differential Equations on Manifolds, pp. 69–92. Amer. Math. Soc., Providence (1993)Google Scholar
  3. 3.
    Chu, M.T., Driessel, K.R.: SIAM J. Numer. Anal. 27, 1050–1060 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Helmke, U., Moore, J.B.: Linear Algebra Appl. 169, 223–248 (1992)Google Scholar
  5. 5.
    Hori, G.: Japan J. Indust. Appl. Math. 14, 315–327 (1997)Google Scholar
  6. 6.
    Hori, G.: Japan J. Indust. Appl. Math. 17, 27–42 (2000)Google Scholar
  7. 7.
    Hori, G.: In: Proc. ICA 2000, pp. 151–155 (2000)Google Scholar
  8. 8.
    Hori, G.: In: Proc. IEEE ICASSP 2003, vol. 2, pp. 693–696 (2003)Google Scholar
  9. 9.
    Smith, S.T.: System and Control Letters 16, 319–328 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gen Hori
    • 1
  1. 1.Brain Science InstituteRIKENSaitamaJapan

Personalised recommendations