Modelling Inhibition in Metabolic Pathways Through Abduction and Induction

  • Alireza Tamaddoni-Nezhad
  • Antonis Kakas
  • Stephen Muggleton
  • Florencio Pazos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3194)


In this paper, we study how a logical form of scientific modelling that integrates together abduction and induction can be used to understand the functional class of unknown enzymes or inhibitors. We show how we can model, within Abductive Logic Programming (ALP), inhibition in metabolic pathways and use abduction to generate facts about inhibition of enzymes by a particular toxin (e.g. Hydrazine) given the underlying metabolic pathway and observations about the concentration of metabolites. These ground facts, together with biochemical background information, can then be generalised by ILP to generate rules about the inhibition by Hydrazine thus enriching further our model. In particular, using Progol 5.0 where the processes of abduction and inductive generalization are integrated enables us to learn such general rules. Experimental results on modelling in this way the effect of Hydrazine in a real metabolic pathway are presented.


Nuclear Magnetic Resonance Metabolic Network Flux Balance Analysis Nuclear Magnetic Resonance Data Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alves, R., Chaleil, R.A., Sternberg, M.J.: Evolution of enzymes in metabolism: a network perspective. Mol. Biol. 320(4), 751–770 (2002)CrossRefGoogle Scholar
  2. 2.
    Alm, E.E., Arkin, A.P.: Biological networks. Curr. Opin. Struct. Biol. 13(2), 193–202 (2003)CrossRefGoogle Scholar
  3. 3.
    Edwards, J.S., Ramakrishna, R., Schilling, C.H., Palsson, B.O.: Metabolic flux balance analysis. In: Lee, S.Y., Papoutsakis, E.T. (eds.) Metabolic Engineering, Marcel Deker,New York (1999)Google Scholar
  4. 4.
    Flach, P., Kakas, A.C.: Abductive and inductive reasoning: Background and issues. In: Flach, P.A., Kakas, A.C. (eds.) Abductive and Inductive Reasoning, Pure and Applied Logic, Kluwer, Dordrecht (2000)Google Scholar
  5. 5.
    Flach, P.A., Kakas, A.C. (eds.): Abductive and Inductive Reasoning. Pure and Applied Logic. vol. 200. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. J. of Comp. Bio. 7, 601–620 (2000)CrossRefGoogle Scholar
  7. 7.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference (UAI 1998), pp. 139–147. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  8. 8.
    Goodwin, B.C.: Oscillatory organization in cells, a dynamic theory of cellular control processes. Academic Press, New York (1963)Google Scholar
  9. 9.
    Hess, B., Boiteux, A.: Oscillatory organization in cells, a dynamic theory of cellular control processes. Hoppe-Seylers Zeitschrift fur Physiologische Chemie 349, 1567–1574 (1968)CrossRefGoogle Scholar
  10. 10.
    Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using bayesian networks and nonparametric regression. In: Proceeding of Pacific Symposium on Biocomputing, pp. 175–186 (2002)Google Scholar
  11. 11.
    Inoue, K.: Induction, abduction and consequence-finding. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 65–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Inoue, K.: Inverse entailment for full clausal theories. In: LICS 2001 Workshop on Logic and Learning (2001)Google Scholar
  13. 13.
    Ito, K., Yamamoto, A.: Finding hypotheses from examples by computing the least generlisation of bottom clauses. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 303–314. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  15. 15.
    Kakas, C., Denecker, M.: Abduction in logic programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Kakas, C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic and Computation 2(6), 719–770 (1993)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kakas, A.C., Riguzzi, F.: Abductive concept learning. New Generation Computing 18, 243–294 (2000)CrossRefGoogle Scholar
  18. 18.
    King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.K.G., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)CrossRefGoogle Scholar
  19. 19.
    Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Muggleton, S.H., Tamaddoni-Nezhad, A., Watanabe, H.: Induction of enzyme classes from biological databases. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 269–280. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28(5), 250–258 (2003)CrossRefGoogle Scholar
  22. 22.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  23. 23.
    Ray, O., Broda, K., Russo, A.: Hybrid Abductive Inductive Learning: a Generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Tamaddoni-Nezhad, A., Muggleton, S., Bang, J.: A bayesian model for metabolic pathways. In: International Joint Conference on Artificial Intelligence (IJCAI 2003) Workshop on Learning Statistical Models from Relational Data, pp. 50–57 (2003)Google Scholar
  25. 25.
    Tyson, J.J., Othmer, H.G.: The dynamics of feedback control circuits in biochemical pathways. Progress in Theoretical Biology 5, 1–62 (1978)Google Scholar
  26. 26.
    Varma, A., Palsson, B.O.: Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technology 12, 994–998 (1994)CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
    Yamamoto, A.: Which hypotheses can be found with inverse entailment? In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS(LNAI), vol. 1297, pp. 296–308. Springer, Heidelberg (1997)Google Scholar
  34. 34.
    Yamamoto, A., Fronhöfer, B.: Finding hypotheses by generalizing residues hypotheses. pp.107–118 (September 2001)Google Scholar
  35. 35.
    Zupan, B., Bratko, I., Demsar, J., Beck, J.R., Kuspa, A., Shaulsky, G.: Abductive inference of genetic networks. AIME, 304–313 (2001)Google Scholar
  36. 36.
    Zupan, B., Bratko, I., Demsar, J., Juvan, P., Halter, J.A., Kuspa, A., Shaulsky, G.: Genepath: a system for automated construction of genetic networks from mutant data. Bioinformatics 19(3), 383–389 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alireza Tamaddoni-Nezhad
    • 1
  • Antonis Kakas
    • 2
  • Stephen Muggleton
    • 1
  • Florencio Pazos
    • 3
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Dept. of Computer ScienceUniversity of Cyprus 
  3. 3.Dept. of Biological SciencesImperial College London 

Personalised recommendations