Advertisement

Circumscription Policies for Induction

  • Katsumi Inoue
  • Haruka Saito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3194)

Abstract

There are two types of formalization for induction in logic. In descriptive induction, induced hypotheses describe rules with respect to observations with all predicates minimized. In explanatory induction, on the other hand, hypotheses abductively account for observations without any minimization principle. Both inductive methods have strength and weakness, which are complementary to each other. In this work, we unify these two logical approaches. In the proposed framework, not all predicates are minimized but minimality conditions can be flexibly determined as a circumscription policy. Constructing appropriate policies, we can intentionally minimize models of an augmented axiom set. As a result, induced hypotheses can have both conservativeness and explainability, which have been considered incompatible with each other in the literature. We also give two procedures to compute inductive hypotheses in the proposed framework.

Keywords

Background Knowledge Logic Program Correct Solution Inductive Logic Programming Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)Google Scholar
  2. 2.
    De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95, 187–201 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2,3), 99–146 (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    De Raedt, L., Lavrač, N.: The many faces of inductive logic programming. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 435–449. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    del Val, A.: A new method for consequence finding and compilation in restricted languages. In: Proceedings of AAAI 1999, pp. 259–264. AAAI Press, Menlo Park (1999)Google Scholar
  6. 6.
    Dimopoulos, Y., Dzeroski, S., Kakas, A.: Integrating explanatory and descriptive learning in ILP. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 900–906. Morgan Kaufmann, San Francisco (1997)Google Scholar
  7. 7.
    Flach, P.A.: Rationality postulates for induction. In: Shoham, Y. (ed.) Proceeding of the 6th TALK, pp. 267–281. Morgan Kaufmann, San Francisco (1996)Google Scholar
  8. 8.
    Flach, P.A., Kakas, A.: Abduction and Induction: Essays on their Relation and Integration. Kluwer Academic, Dordrecht (2000)zbMATHGoogle Scholar
  9. 9.
    Helft, N.: Induction as nonmonotonic inference. In: Proceedings of KR 1989, pp. 149–156. Morgan Kaufmann, San Francisco (1989)Google Scholar
  10. 10.
    Helft, N., Inoue, K., Poole, D.: Query answering in circumscription. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 426–431. Morgan Kaufmann, San Francisco (1991)Google Scholar
  11. 11.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56(2,3), 301–353 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Inoue, K.: Induction, abduction, and consequence-finding. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 65–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Inoue, K.: Induction as consequence finding. Machine Learning 55(2), 109–135 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Inoue, K., Haneda, H.: Learning abductive and nonmonotonic logic programs, vol. 8, pp. 213–231 (2000)Google Scholar
  15. 15.
    Kakas, C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)Google Scholar
  16. 16.
    Lachiche, N.: Abduction and induction from a non-monotonic reasoning perspective, vol. 8, pp. 107–116 (2000)Google Scholar
  17. 17.
    Lachiche, N., Marquis, P.: A model for generalization based on confirmatory induction. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 154–161. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Lifschitz, V.: Computing circumscription. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 122–127. Morgan Kaufmann, San Francisco (1985)Google Scholar
  19. 19.
    Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 298–352. Oxford University Press, Oxford (1994)Google Scholar
  20. 20.
    McCarthy, J.: Circumscription—a form of nonmonotonic reasoning. Artificial Intelligence 13, 27–39 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13(3,4), 245–286 (1995)CrossRefGoogle Scholar
  22. 22.
    Muggleton, S.H., Bryant, C.H.: Theory completion and inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Ohlbach, H.J.: SCAN—elimination of predicate quantifiers. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 161–165. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Poole, D., Goebel, R., Aleliunas, R.: Theorist: a logical reasoning system for defaults and diagnosis. In: Cercone, N., McCalla, G. (eds.) The Knowledge Frontier: Essays in the Representation of Knowledge, pp. 331–352. Springer, Heidelberg (1987)Google Scholar
  25. 25.
    Przymusinski An, T.C.: algorithm to compute circumscription. Artificial Intelligence 38, 49–73 (1989)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 119–140. Plenum Press, New York (1978)Google Scholar
  27. 27.
    Takimoto, E., Maruoka, A.: Conservativeness and monotonicity for learning algorithms. In: Proceedings of the 6th Annual Conference on Computational Learning Theory, pp. 377–383. ACM Press, New York (1993)CrossRefGoogle Scholar
  28. 28.
    Yamamoto, A.: Hypothesis finding based on upward refinement of residue hypotheses. Theoretical Computer Science 298, 5–19 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Katsumi Inoue
    • 1
  • Haruka Saito
    • 2
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Internet System Research LaboratoriesNEC CorporationNaraJapan

Personalised recommendations