Advertisement

Abstract

The problem of finding an agreement on the meaning of heterogeneous schemas is one of the key issues in the development of the Semantic Web. In this paper, we propose a new algorithm for discovering semantic mappings across hierarchical classifications based on a new approach to semantic coordination. This approach shifts the problem of semantic coordination from the problem of computing linguistic or structural similarities (what most other proposed approaches do) to the problem of deducing relations between sets of logical formulas that represent the meaning of nodes belonging to different schemas. We show how to apply the approach and the algorithm to an interesting family of schemas, namely hierarchical classifications. Finally, we argue why this is a significant improvement on previous approaches.

Keywords

Semantic Web Semantic Interoperability Information retrieval Automated Reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giunchiglia, F., Pavel, S.: Semantic matching. In: Proceedings of the workshop on Semantic Integration Sanibel Island, Florida, USA (2003)Google Scholar
  2. 2.
    Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: a new approach and an application. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 130–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Büchner, A., Ranta, M., Hughes, J., Mäntylä, M.: Semantic information mediation among multiple product ontologies. In: Proc. 4thWorld Conference on Integrated Design & Process Technology (1999)Google Scholar
  4. 4.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  5. 5.
    Bonifacio, M., Bouquet, P., Mameli, G., Nori, M.: Kex: a peer-to-peer solution for distributed knowledge management. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2002. LNCS (LNAI), vol. 2569, pp. 490–500. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Magnini, B.M., Serafini, L., Doná, A., Gatti, L., Girardi, C., Speranza, M.: Large–scale evaluation of context matching. Technical Report 0301–07, ITC–IRST, Trento, Italy (2003)Google Scholar
  7. 7.
    Zhang, K., Wang, J.T.L., Shasha, D.: On the editing distance between undirected acyclic graphs and related problems. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 3. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: The VLDB Journal, pp. 49–58 (2001)Google Scholar
  10. 10.
    Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and structured data sources. SIGMOD Record 28, 54–59 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • P. Bouquet
    • 1
  • L. Serafini
    • 2
  • S. Zanobini
    • 1
  1. 1.Department of Information and Communication TechnologyUniversity of TrentoTrentoItaly
  2. 2.ITC – IRSTTrentoItaly

Personalised recommendations