Designing Hybrid Cooperations with a Component Language for Solving Optimisation Problems

  • Carlos Castro
  • Eric Monfroy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3192)


In this paper, we use a simple asynchronous coordination language to design some complex hybrid cooperation schemes for solving optimisation problems. The language allows us to specify the interaction between complete and incomplete constraint solvers in a clear and uniform way. Experimental results show the benefits of such hybrid cooperations in terms of efficiency.


Local Search Constraint Satisfaction Problem Vehicle Route Problem Cooperation Scheme Solve Optimisation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbab, F.: Manifold 2.0 Reference Manual. CWI, The Netherlands (May 1997)Google Scholar
  2. 2.
    Bockmayr, A., Kasper, T.: Branch-and-Infer: A unifying framework for integer and finite domain constraint programming. INFORMS J. Computing 10(3), 287–300 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Castro, C., Monfroy, E., Ringeissen, C.: A Rule Language for Interaction. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 154–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Castro, C., Moossen, M., Riff, M.C.: A Cooperative Framework Based on Local Search and Constraint Programming for Solving Discrete Global Optimisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 93–102. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  5. 5.
    Jussien, N., Lhomme, O.: Local search with constraint propagation and conflictbased heuristics. Artificial Intelligence 139, 21–45 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mackworth, A.: Consistency in Networks of Relations. AI Journal 8, 99–118 (1977)zbMATHGoogle Scholar
  7. 7.
    Monfroy, E., Castro, C.: A Component Language for Hybrid Solver Cooperations. In: Yakhno, T. (ed.) ADVIS 2004. LNCS, vol. 3261, pp. 192–202. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  8. 8.
    Prestwich, S.: Combining the scalability of local search with the pruning techniques of systematic search. Annals of Operations Research 115, 51–72 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Solomon, M.: Algorithms for the vehicle routing and scheduling problem with time window constraints. Operations Research, 254–365 (1987)Google Scholar
  10. 10.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)Google Scholar
  11. 11.
    Zahn, M., Hower, W.: Backtracking along with constraint processing and their time complexities. J. of Exp. and Theor. AI 8, 63–74 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Carlos Castro
    • 1
  • Eric Monfroy
    • 2
  1. 1.Universidad Técnica Federico Santa MaríaChile
  2. 2.LINAUniversité de NantesFrance

Personalised recommendations