Advertisement

Arabic Words Recognition with Classifiers Combination: An Application to Literal Amounts

  • Nadir Farah
  • Labiba Souici
  • Lotfi Farah
  • Mokhtar Sellami
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3192)

Abstract

The recognition of handwritten bank check literal amount is a problem that humans can solve easily. As a problem in automatic machine reading and interpreting, it presents a challenge and an interesting field of research. An approach for recognizing the legal amount for handwritten Arabic bank check is described in this article. The solution uses multiple information sources to recognize words. The recognition step is preformed in a parallel combination schema using holistic word structural features. The classification stage results are first normalized, and the combination schema is performed, after which using contextual information, the final decision on the candidate words can be done. Using this approach obtained results are more interesting than those obtained with individual classifiers.

Keywords

Multiclassifier system holistic approach combiner syntactic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Madhvanath, S., Govindaraju, V.: The Role of Holistic Paradigms in Handwritten word Recognition. IEEE Trans. On Pattern Analysis and Machine Intelligence 23(2) (February 2001)Google Scholar
  2. 2.
    Steinherz, T., Rivlin, E., Intrator, N.: Off-line cursive script word recognition: A survey. International Journal on Document analysis and Recognition, IJDAR 2, 90–110 (1999)CrossRefGoogle Scholar
  3. 3.
    Suen, C.Y.: Réflexions sur la reconnaissance de l’écriture cursive. In: Actes CIFED 1998, 1er Colloque International Francophone sur l’Ecrit et le Document, Québec, Canada, May 1998, pp. 1–8 (1998)Google Scholar
  4. 4.
    Zouari, H., Heutte, L., Lecourtier, Y., Alimi, A.: Un panorama des méthodes de combinaison de classifieurs en reconnaissance de formes. In: RFIA 2002, 11th Congrès francophone AFRIF-AFIA de Reconnaissance des Formes et Intelligence Artificielle, Angers, January 2002, pp. 499–508 (2002)Google Scholar
  5. 5.
    Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on systems. Man, and cybernetics 22(3) (May/June 1992)Google Scholar
  6. 6.
    Amin, A.: Off-line Arabic character recognition: The state of the art. Pattern Recognition 31(5), 517–530 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Al Badr, B., Mahmoud, S.A.: Survey and bibliography of Arabic optical text recognition. Signal processing 41, 49–77 (1995)zbMATHCrossRefGoogle Scholar
  8. 8.
    Amara, E.B.: Sur la problématique et les orientations en reconnaissance de l’écriture arabe. In: CIFED 2002, pp. 1–8 (2002)Google Scholar
  9. 9.
    Ben Amara, N., Belaid, A., Ellouze, N.: Utilisation des modèles markoviens en reconnaissance de l’écriture arabe: état de l’art. In: CIFED 2000, France, pp. 181–191 (2000)Google Scholar
  10. 10.
    Snoussi.Maddouri, S., Amiri, H., Belaid, A., Choisy, C.: Combination of Local and Global Vision Modeling for Arabic Handwritten Word Recognition. In: International Workshop Frontier in HandWriting IWFHR 2002, Canada (2002)Google Scholar
  11. 11.
    Souici-Meslati, L., Sellami, M.: Reconnaissance de montants littéraux arabes par une approche hybride neuro-symbolique. In: RFIA 2002, 11th Congrès francophone AFRIFAFIA de Reconnaissance des Formes et Intelligence Artificielle, Angers (January 2002)Google Scholar
  12. 12.
    Ruta, D., Gabrys, B.: An Overview of Classifier Fusion Methods. Computing and Information Systems 7(1), 1–10 (2000), http://cis.paisley.ac.uk/rutaci0/downloads/paper1.pdf Google Scholar
  13. 13.
    Pavlidis, T.: Algorithms for Graphic and Image Processing. Computer science press, Rockville (1982)Google Scholar
  14. 14.
    Belaid, A., Belaid, Y.: Reconnaissance des formes: Méthodes et applications. InterEditions (1992)Google Scholar
  15. 15.
    Sari, T.: Un système de Reconnaissance de mots arabes manuscrits basé segmentation. Mémoire de Magister, Laboratoire LRI, Département Informatique, Université Badji Mokhtar Annaba, Algérie, Février (2000)Google Scholar
  16. 16.
    Ameur, A., Romeo-Pakker, K., Miled, H., Cheriet, M.: Approche globale pour la reconnaissance de mots manuscrits Arabes. In: Actes CNED 1994, 3ème Colloque National sur l’Ecrit et le Document, pp. 151–156 (Juillet 1994)Google Scholar
  17. 17.
    Jain, A.K., Mao, J., Mohiuddin, K.: Artificial Neural Networks: A Tutorial. IEEE Computer, Special Issue on Neural computing, Marsh (1996)Google Scholar
  18. 18.
    Jodouin, J.F.: Les réseaux de neurones: principes et définitions. Hermès (1994)Google Scholar
  19. 19.
    Singh, S., Amin, A.: Fuzzy Recognition of Chinese Characters. In: Proc. Irish Machine Vision and Image Processing Conference (IMVIP 1999), Dublin (September 8-9, 1999)Google Scholar
  20. 20.
    Duin, R.P.W.: The combining classifier: To train or Not to train? In: Proceedings 16th International Conference on Pattern Recognition, Quebec City, Canada (August 11-15, 2002)Google Scholar
  21. 21.
    Anil, J.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE transactions on pattern analysis and machine intelligence 22(1) (January 2000)Google Scholar
  22. 22.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE transactions on pattern analysis and machine intelligence 20(3) (March 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Nadir Farah
    • 1
  • Labiba Souici
    • 1
  • Lotfi Farah
    • 1
  • Mokhtar Sellami
    • 1
  1. 1.Laboratoire de Recherche en InformatiqueUniversité Badji MokhtarAnnabaAlgerie

Personalised recommendations