Skip to main content

Increasing the Classification Accuracy of Simple Bayesian Classifier

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3192))

Abstract

Simple Bayes algorithm captures the assumption that every feature is independent from the rest of the features, given the state of the class feature. The fact that the assumption of independence is clearly almost always wrong has led to a general rejection of the crude independence model in favor of more complicated alternatives, at least by researchers knowledgeable about theoretical issues. In this study, we attempted to increase the prediction accuracy of the simple Bayes model. Because the concept of combining classifiers is proposed as a new direction for the improvement of the performance of individual classifiers, we made use of Adaboost, with the difference that in each iteration of Adaboost, we used a discretization method and we removed redundant features using a filter feature selection method. Finally, we performed a large-scale comparison with other attempts that have tried to improve the accuracy of the simple Bayes algorithm as well as other state-of-the-art algorithms and ensembles on 26 standard benchmark datasets and we took better accuracy in most cases using less time for training, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D.: Lazy Learning. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  3. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Irvine, CA: University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  6. Dougherty, J., Kohavi, R., Shami, M.: Supervised and unsupervised discretization of continuous features. In: Proceedings of the twelfth International Conference of Machine Learning, Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  7. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  8. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of ICML 1996, pp. 148–156 (1996)

    Google Scholar 

  9. Friedman, J.H.: On bias, variance, 0/1-loss and curse-of-dimensionality. Data Mining and Knowledge Discovery 1, 55–77 (1997)

    Article  Google Scholar 

  10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  11. Gama, J.: Iterative Bayes. Intelligent Data Analysis 6, 463–473 (2000)

    Google Scholar 

  12. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 2, 273–324 (1997)

    Article  Google Scholar 

  13. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proc. of the 10th Conference on Uncertainty in Artificial Intelligence, Seattle, pp. 399–406 (1994)

    Google Scholar 

  14. Michie, D., Spiegelhalter, D., Taylor, C.: Machine Learning, Neural and Statistical Classification, Ellis Horwood (1994)

    Google Scholar 

  15. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  16. Pazzani, M.: Searching for dependencies in Bayesian classifiers. In: Artificial Intelligence and Statistics IV. Lecture Notes in Statistics, Springer, New York (1997)

    Google Scholar 

  17. Platt, J.: Using sparseness and analytic QP to speed training of support vector machines. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in neural information processing systems 11, MIT Press, MA (1999)

    Google Scholar 

  18. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Quinlan, J.R.: Bagging, boosting, and C4.5. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 725–730 (1996)

    Google Scholar 

  20. Ratanamahatana, C., Gunopulos, D.: Feature Selection for the Naive Bayesian Classifier using Decision Trees. Applied Artificial Intelligence 17, 475–487 (2003)

    Article  Google Scholar 

  21. Ridgeway, G., Madigan, D., Richardson, T.: Interpretable boosted Naive Bayes classification. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Menlo Park, pp. 101–104 (1998)

    Google Scholar 

  22. Salzberg, S.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery 1, 317–328 (1997)

    Article  Google Scholar 

  23. Singh, M., Provan, G.: Efficient learning of selective Bayesian network classifiers. In: Proc of the 13th International Conference on Machine Learning, Bari, pp. 453–461 (1996)

    Google Scholar 

  24. Ting, K., Zheng, Z.: Improving the Performance of Boosting for Naive Bayesian Classification. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 296–305. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Tsymbal, A., Puuronen, S., Patterson, D.: Feature Selection for Ensembles of Simple Bayesian Classifiers. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 592–600. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Witten, Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Mateo (2000)

    Google Scholar 

  27. Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Machine Learning 41, 53–84 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotsiantis, S.B., Pintelas, P.E. (2004). Increasing the Classification Accuracy of Simple Bayesian Classifier. In: Bussler, C., Fensel, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2004. Lecture Notes in Computer Science(), vol 3192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30106-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30106-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22959-9

  • Online ISBN: 978-3-540-30106-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics