Advertisement

Solving Constraints Between Lines in Euclidean Geometry

  • Philippe Balbiani
  • Khalil Challita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3192)

Abstract

We consider constraints satisfaction problems between lines in Euclidean geometry. Our language of constraints is based on the binary relation of parallelism. Our main results state that (1) solving constraints between lines in dimension 2 can be done in polynomial time whereas (2) solving constraints between lines in dimension 3 is NP-hard.

Keywords

Spatial reasoning Constraint satisfaction problems Euclidean geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the Association for Computing Machinery 26, 832–843 (1983)zbMATHGoogle Scholar
  2. 2.
    Balbiani, P.: Raisonner à propos des droites et des cercles: réseaux de contraintes et systèmes déductifs, Reconnaissance des Formes et Intelligence Artificielle, RFIA (2004)Google Scholar
  3. 3.
    Bennett, B., Isli, A., Cohn, A.G.: When does a composition table provide a complete and tractable proof procedure for a relational constraint language? In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI (1997)Google Scholar
  4. 4.
    Clarke, B.: Individuals and points. Notre Dame Journal of Formal Logic 26, 61–75 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cui, Z., Cohn, A., Randell, D.: Qualitative and topological relationships in spatial databases. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 296–315. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Condotta, J.-F.: Problèmes de satisfaction de contraintes spatiales: algorithmes et complexité, Thèse de l’université Paul Sabatier (2000)Google Scholar
  7. 7.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence, 61–95 (1991)Google Scholar
  8. 8.
    Egenhofer, M.J.: Reasoning about binary topological relationships. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Frank, A.U.: Qualitative spatial reasoning about distances and directions in geographic space. Languages and Computing, 343–371 (1992)Google Scholar
  10. 10.
    Freska, C.: Using orientation information for qualitative spatial reasoning. In: Proceedings of COSIT 1992. LNCS, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Freuder, E.: A Sufficient condition for backtrack-free search. Journal of the ACM, 24–32 (1982)Google Scholar
  12. 12.
    Henkin, L., Suppes, P., Tarski, A.: The axiomatic method. North-Holland, Amsterdam (1959)zbMATHGoogle Scholar
  13. 13.
    Ligozat, G.: Reasoning about cardinal directions. Journal ofVisual Languages and Computing 9, 23–44 (1998)CrossRefGoogle Scholar
  14. 14.
    Mackworth, A.: Consistency in networks of relations. Artificial Intelligence, 99–118 (1977)Google Scholar
  15. 15.
    Mackworth, A., Freuder, E.: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial Intelligence, 65–74 (1985)Google Scholar
  16. 16.
    Montanari, U.: Networks of constraints: Fundamental properties and application to picture processing. Information Sciences, 95–132 (1974)Google Scholar
  17. 17.
    Papadias, D., Theodoridis, T., Sellis, T., Egenhofer, M.J.: Topological relations in the world of minimum bounding rectangles: a study with R-trees. In: Proceedings in ACM SIGMOD 1995, pp. 92–103 (1995)Google Scholar
  18. 18.
    Papadimitriou, C.: Computational complexity. Addison Wesley, Reading (1994)zbMATHGoogle Scholar
  19. 19.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufman, San Francisco (1992)Google Scholar
  20. 20.
    Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus. In: Proceedings IJCAI 1997, Nagoya, Japan, pp. 522–527 (1997)Google Scholar
  21. 21.
    Sistla, A.P., Yu, C., Haddad, R.: Reasoning about Spatial Relations in Picture Retrieval Systems. In: Proceedings in VLDB 1994, pp. 570–581 (1994)Google Scholar
  22. 22.
    Skiadopoulos, S., Koubarakis, M.: Composing cardinal directions relations. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 299–317. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proceedings of the Fifth National Conference onArtificial Intelligence. American Association for Artificial Intelligence, pp. 377–382 (1986)Google Scholar
  24. 24.
    Zimmermann, K.: Enhancing qualitative spatial reasoning- Combining orientation and distance. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 69–76. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Philippe Balbiani
    • 1
  • Khalil Challita
    • 1
  1. 1.Irit-CNRSUniversité Paul SabatierToulouse Cedex 4France

Personalised recommendations