Advertisement

Orthogonal Operators for User-Defined Symbolic Periodicities

  • Lavinia Egidi
  • Paolo Terenziani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3192)

Abstract

We identify a set of orthogonal properties characterizing periodicities; based on these we define a lattice of classes (of periodicities). For each property, we introduce a language operator and, this way, we propose a family of symbolic languages, one for each subset of operators, one for each point in the lattice. So, the expressiveness and meaning of each operator, and thus of each language in the family, are clearly defined, and a user can select the language that exactly covers the properties of her domain. To the best of our knowledge, our language covering the top of the lattice (i.e., all of the properties) is more expressive than any other symbolic language in the AI and DB literature.

Keywords

user-defined periodicities symbolic languages orthogonal operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bettini, C., Dyreson, C., Evans, W., Snodgrass, R., Wang, X.: A Glossary of Time Granularity Concepts. In: Temporal Databases: Research and Practice, Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Bettini, C., De Sibi, R.: Symbolic Representation of User-defined Time Granularities. In: Proc. TIME 1999, pp. 17–28. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  4. 4.
    Chomicki, J., Imielinsky, T.: Finite Representation of Infinite Query Answers. ACM ToDS 18(2), 181–223 (1993)CrossRefGoogle Scholar
  5. 5.
    Cukierman, D., Delgrande, J.: Expressing Time Intervals and Repetition within a Formalization of Calendars. Computational Intelligence 14(4), 563–597 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Egidi, L., Terenziani, P.: A lattice of classes of user-defined symbolic periodicities. In: TIME 2004 (2004)Google Scholar
  7. 7.
    Egidi, L., Terenziani, P.: A mathematical framework for the semantics of symbolic languages representing periodic time. In: TIME 2004 (2004)Google Scholar
  8. 8.
    Enderton: A Mathematical Introduction to Logic. Academic Press, New York (1972)zbMATHGoogle Scholar
  9. 9.
    Kabanza, F., Stevenne, J.-M., Wolper, P.: Handling Infinite Temporal Data. Journal of Computer and System Sciences 51, 3–17 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kurt, A., Ozsoyoglu, M.: Modelling and Querying Periodic Temporal Databases. In: Revell, N., Tjoa, A.M. (eds.) DEXA 1995. LNCS, vol. 978, pp. 124–133. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Leban, B., McDonald, D.D., Forster, D.R.: A representation for collections of temporal intervals. In: AAAI 1986, pp. 367–371 (1986)Google Scholar
  12. 12.
    Niezette, M., Stevenne, J.-M.: An Efficient Symbolic Representation of Periodic Time. In: Finin, T.W., Yesha, Y., Nicholas, C. (eds.) CIKM 1992. LNCS, vol. 752, Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Soo, M., Snodgrass, R.: Multiple Calendar Support for Conventional Database Management Systems. In: Proc. ITD (1993)Google Scholar
  14. 14.
    Terenziani, P.: Symbolic User-defined Periodicity in Temporal Relational Databases. IEEE TKDE 15(2), 489–509 (2003)Google Scholar
  15. 15.
    Tuzhilin, A., Clifford, J.: On Periodicity in Temporal Databases. Information Systems 20(8), 619–639 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lavinia Egidi
    • 1
  • Paolo Terenziani
    • 1
  1. 1.Dipartimento di InformaticaUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations