Skip to main content

Conclusions

  • Chapter
Breaking Ocean Waves

Part of the book series: Springer Praxis Books ((GEOPHYS))

  • 811 Accesses

Abstract

The scientific results presented in this book allow us to get the most complete idea, to date, of the modern level of development of microwave and optical remote diagnostics of a rough sea surface when the single-boundedness of the surface is broken and when an intermediate density zone arises, which represents a polydisperse mixture of finite volumes of air and water with highly fluctuating (in space and time) transition characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T. (1957). A supplementary note on the foaming of sea water. Rec. Oceanogr. Works Jap., Vol. 4, No. 1, pp. 1–7.

    Google Scholar 

  • Abe T. (1962). On the stable foam forming of sea water in seas (preliminary report). J. Oceanogr. Soc. Japan, 20th Ann. Vol., pp. 242–250.

    Google Scholar 

  • Abe T. (1963). In situ formation of stable foam in sea water to cause salty wind damage. Pap. Meteorol. and Geophys., Vol. 14, No. 2, pp. 93–108.

    Google Scholar 

  • Aden A. L. and Kerker M. (1951). Scattering of electromagnetic waves from two concentric spheres. J. Appl. Phys., Vol. 22, No. 10, pp. 357–361.

    Article  Google Scholar 

  • Alcock R. K. and Morgan D. G. (1978). Investigation of wind and sea state with respect to the Beaufort Scale. Weather, Vol. 33, No. 7, pp. 271–277.

    Google Scholar 

  • Alpers W. and Hasselmann K. (1982). Spectral signal to clutter and thermal noise properties of ocean wave imaging synthetic aperture radars. Intl. J. Rem. Sens., Vol. 3, No. 4, pp. 432–446.

    Google Scholar 

  • Atlas D., Ulbrich C.W., Meneghini R. (1984). The multiparameter remote measurement of rainfall. Radio Sci., Vol. 19, No. 1, pp. 3–22.

    Google Scholar 

  • Au B., Kenney J., Martin, L., and Ross D. (1974) Multifrequency radiometric measurements of foam and monomolecular slicks. Proc. of the 7th International Symposium Rem. Sens. Env. vol. 3, Michigan, pp. 1763–1773.

    Google Scholar 

  • Avanesova G. G., Volayk K. B., Shugan I. V. (1984). The measurement of sea waves characteristics by air-borne side-looking radar. Theory and experiment. Trudy Phisicheskogo Instituta Akademii Nauk (Transactions of Academy Science Physical Institute), Vol. 156, pp. 94–123 [in Russian].

    Google Scholar 

  • Banner M. L. and Peregrine D. H. (1993). Wave breaking in deep water. Ann. Rev. Fluid Mech., Vol. 25, pp. 373–397.

    Article  Google Scholar 

  • Banner M. L., and Phillips O.M. (1974). On the incipient breaking of small scale waves. J. Fluid Mech., Vol. 65, pp. 647–656.

    Article  Google Scholar 

  • Baryshnikova Yu. S., Zaslavsky G. M., Lupian E. A., Moiseev S. S., and Sharkov E. A. (1989). Fractal analysis of the pre-hurricane atmosphere from satellite data. Adv. Space Research, Vol. 9, No. 7, pp. 405–408.

    Article  Google Scholar 

  • Basharinov A. E., Gurvich A. S., Egorov S. T. (1969). The retrieval of geophysical parameters with thermal emission data by Cosmos-243 satellite. Doklady Acad. Nauk USSR (Trans. of Russian Academy of Sciences/Earth Science Section—Eng. Transl.), Vol. 188, No. 6, pp. 1273–1275.

    Google Scholar 

  • Bass F. G., Braude S. Y., and Kalmykov A. I. (1975). The radiophysical investigations of seas (radiooceanography) developed in Ukrainian SSR Academy of Sciences. Preprint No. 51. Kharkov, IRE of Ukrainian SSR, 53 pp. [in Russian].

    Google Scholar 

  • Belov D. M. (1978). The technique for experimental study of the ocean—atmosphere energy transfer using drop-spray mechanism. Izvestia Vsesouznogo Geographicheskogo obschestva (Izvestiya VGO), Vol. 110, No. 3, pp. 257–261 ([in Russian].

    Google Scholar 

  • Bendat J.S. and Piersol A. G. (1966). Random data and measurements procedures. Wiley-Interscience, New York, 450 pp.

    Google Scholar 

  • Bespalova E. A., Veselov V. M., Glotov A. A., Militzkii Y. A., Mirovskii V. G., Pokrovskaya I. V., Popov A. E., Raev M. D., Sharkov E. A., Etkin V. S. (1979). Investigations of wind sea roughness anisotropy with variability of thermal radioemission. Doklady Acad. Nauk (Trans. of Russian Academy of Sciences/Earth Science Section—Engl. Transl.), Vol. 246, No. 6, pp. 1482–1485.

    Google Scholar 

  • Bespalova E. A., Veselov V. M., Gershenson V. E., Militzkii Y. A., Mirovskii V. G., Pokrovskaya I. V., Raev M. D., Trochimovskii J. G., Semin A. G., Smirnov N. K. et al. (1982). On determination of wind speed with polarization anisotropy measurements of thermal and backscattering microwaves. Earth Research from Space, No. 1, pp. 87–94.

    Google Scholar 

  • Bezzabotnov V. S. (1985). Some results of natural measurements of sea foam systems structure. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 21, No. 1, pp. 101–104.

    Google Scholar 

  • Bharucha-Reid A.T. (1960). Elements of the theory of Markov processes and their applications. McGraw-Hill, New York, 360pp.

    Google Scholar 

  • Bikerman J.J. (1973). Foams. Springer-Verlag, New York, 320 pp.

    Google Scholar 

  • Blanchard D. C. (1963). The electrification of the atmosphere by particles from bubbles in the sea. Progress in Oceanography, Vol. 1, pp. 73–202.

    Article  Google Scholar 

  • Blanchard D. C. and Woodcock A. H. (1957). Bubble formation and modification in the sea and its meteorological significance. Tellus, Vol. 9, No. 2, pp. 145–158.

    Google Scholar 

  • Bohren C. F. and Hoffman D. R. (1983). Absorption and scattering of light by small particles. New York, Wiley, 530 pp.

    Google Scholar 

  • Bondur V. G. and Sharkov E. A. (1982) Statistical properties of whitecaps on a rough sea. Oceanology, Vol. 22, No. 3, pp. 274–279.

    Google Scholar 

  • Bondur V. G. and Sharkov E. A. (1990) Statistical characteristics of linear geometric elements of foam structures on the sea surface for optical sensor data. Sov. J. Remote Sensing, Vol. 6, No. 4, pp. 534–550.

    Google Scholar 

  • Bordonskii G. S., Vasilkova I. B., Veselov V. M., Vorsin N. N., Militskii Y. A., Mirovskii V. G., Nikitin V. V., Raizer V. Y., Khapin Y. B., Sharkov E. A. et al. (1978). Spectral characteristics of the emissivity of foam formations. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 14, No. 6, pp. 656–663.

    Google Scholar 

  • Bordugov V. M., Vereshak A. I., Grodskii S. A. (1986). The investigation of representation for large-scale internal waves parameters on ocean surface. Preprint. Morskoi Hydrophisicheskii Institut (Sea Hydrophysical Institute), Sevastopol, p. 86. [in Russian].

    Google Scholar 

  • Borisenkov Ye. P. and Kuznetsov M. A. (1976). On the theory of heat and moisture exchange between the atmosphere and ocean under stormy weather conditions. Meteorologia i hydrologia (Russian Meteorology and Hydrology—Engl. transl.), No. 5, pp. 18–26.

    Google Scholar 

  • Borisenkov Ye. P. and Kuznetsov M. A. (1978). On the parametrization of interaction between the atmosphere and ocean under stormy weather related to the atmosphere circulation models. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 14, No. 5, pp. 510–519.

    Google Scholar 

  • Born M. and Wolf E. (1999). Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light 7th Edition. Cambridge University Press, New York, 952 pp.

    Google Scholar 

  • Bortkovskiy R. S. (1977). The experimental investigations of droplet fields over wind waves. Trudy Glavnoi Geophysical Obsevatory (Proceedings of the Main Geophysical Observatory), Issue 398, pp. 34–40 [in Russian].

    Google Scholar 

  • Bortkovskiy R. S. (1983). Atmosphereocean heat and moisture exchange at storm conditions. Hydrometeoizdat, Leningrad, 158 pp.

    Google Scholar 

  • Bortkovskiy R. S. (1987). Time-space characteristics of whitecaps and foam patches formed by wave breaking. Meteorologia i hydrologia (Russian Meteorology and Hydrology—Engl. Transl.), No. 5, pp. 68–75.

    Google Scholar 

  • Bortkovskiy R. S. (2006). Estimation of the oxygen and CO2 mean exchange between the ocean and the atmosphere in key areas of the ocean. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 42, No. 2, pp. 250–257.

    Google Scholar 

  • Bortkovskiy R. S. and Kuznetsov M. A. (1977). Some results of sea surface condition study. In: Typhoon 75, Vol. 1. Hydrometeoizdat, Leningrad, pp. 90–105 [in Russian].

    Google Scholar 

  • Bortkovskiy R. S. and Timonovsky D. F. (1982). On the microsructure of wind-waves breaking crests. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 18, No. 3, pp. 327–329.

    Google Scholar 

  • Brekhovskikh L. M. (1957). Waves in layered media. USSR Acad. Sciences, Moscow, 502 pp.

    Google Scholar 

  • Bulatov M. G., Kravtsov Yu. A., Lavrova O. Yu., Litovchenko K. Ts., Mityagina M. I., Raev M. D., Sabinin K. D., Trokhimovskii Yu. G., Churyumov A. N., Shugan I. V. (2003). Physical mechanisms of aerospace radar imaging of the ocean. Physics-Uspekhi, Vol. 46, No. 1, pp. 63–79.

    Article  Google Scholar 

  • Bulatov M. G., Raev M. D., Skvortsov E. I. (2004). Dynamics of sea waves in coastal region according to date of high-resolution radar observation. Physics of Wave Phenomena, Vol. 12, No. 1, pp. 18–24.

    Google Scholar 

  • Bulatov M. G., Raev M. D., Skvortsov E. I. (2006). Study of nonlinear wave dynamics with the spatial-frequency spectra of the sea surface radioimages. Earth Research from Space, No. 2, pp. 1–7.

    Google Scholar 

  • Bunkin F. V. and Gochelashvili K. S. (1968). The overshoots for random scalar field. Radiophysics and Quantum Electronics, Vol. 11, No. 12, pp. 1864–1870.

    Article  Google Scholar 

  • Camps A., Vall-Ilossera M., Villarino R., Reul N., Chapron B., Corbella I., Duffo N., Torres F., Miranda J. J., Sabia R., Monerris A., and Rodriguez R. (2005). The emissivity of foam-covered water surface at L-band: Theoretical modeling and experimental results from the FROG 2003 field experiment. IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, pp. 925–936.

    Article  Google Scholar 

  • Carter D. J. (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Eng., Vol. 9, No. 1. pp. 17–33.

    Article  Google Scholar 

  • Cavaleri L. (2006). Wave modeling. Where to go in the future. Bull. Amer. Meteorological Soc., Vol. 87, No. 2, pp. 207–214.

    Article  Google Scholar 

  • Cherny I. V. (1982). Radiometer-scatterometer in millimeter range for sea surface investigations. Preprint No. Pr-689. Space Research Institute, Moscow, 19 pp. [in Russian].

    Google Scholar 

  • Cherny I. V. and Sharkov E. A. (1988). Remote radiometry of the sea wave breaking cycle. Earth Research from Space (Earth Obs. Remote Sensing—Engl. Transl.), No. 2, pp. 17–28.

    Google Scholar 

  • Cherny I. V. and Sharkov E. A. (1991a). Electrodynamics of discrete dispersive concentrated media with absorbing scattering particles. Preprint No. Pr-1753. Space Research Institute, Moscow, 40 pp. [in Russian].

    Google Scholar 

  • Cherny I. V. and Sharkov E. A. (1991b). Characteristics of backscattering of electromagnetic waves by concentrated air-dispersive media. Pisma v Zhurnal Tech. Fiziki (Technical Physics Letters—Engl. Transl.), Vol. 17, No. 3, pp. 73–77.

    Google Scholar 

  • Cipriano R. J. and Blanchard D. C. (1981). Bubble and aerosol spectra produced by laboratory breaking waves. J. Geophysical Research, Vol. 86, pp. 8085–8092.

    Google Scholar 

  • Conwell P. R., Barber P. W., Rushforth C. K. (1984). Resonant spectra of dielectric spheres. J. Opt. Soc. Am. A, Vol. 1, No. 1. pp. 62–67.

    Google Scholar 

  • Cramer H. and Leadbetter M. R. (1967). Stationary and related stochastic processes: Sample function properties and their applications. Wiley, New York, 398 pp.

    Google Scholar 

  • Day J. A. (1964). Production of droplets and salt nuclei by bursting of air-bubble films. Quart. J. Roy. Met. Soc., Vol. 90, No. 383, pp. 72–78.

    Article  Google Scholar 

  • Deane G. B. and Stokes M. D. (2002). Scale dependence of bubble creation mechanisms in breaking waves. Nature, Vol. 418, No. 6900, pp. 839–844.

    Article  Google Scholar 

  • Deirmendjian D. (1969). Electromagnetic scattering on spherical poly dispersions. American Elsevier, New York, 290 pp.

    Google Scholar 

  • Dombrovskiy L. A. (1974). Scattering and absorption of light by hollow spherical particles. Izvestiya, Atmos. Oceanic Phys., Vol. 10, No. 7, pp. 720–727.

    Google Scholar 

  • Dombrovskiy L. A. (1979). Calculation of the thermal radiation emission of foam on the sea surface. Izvestiya, Atmos. Oceanic Phys., Vol. 15, No. 3, pp. 193–198.

    Google Scholar 

  • Dombrovskiy L. A. (1981). Absorption and scattering of microwave emission by spherical aqueous envelopes. Izvestiya, Atmos. Oceanic Phys., Vol. 17, No. 3, pp. 324–329.

    Google Scholar 

  • Dombrovskiy L. A. and Raizer V. Y. (1992). Microwave model of a two-phase medium at the ocean surface. Izvestiya, Atmos. Oceanic Phys., Vol. 28, No. 8, pp. 650–656.

    Google Scholar 

  • Doviak R. J. and Lee J. T. (1985). Radar for storm forecasting and weather hazard warning. J. Aircraft, Vol. 22, No. 12, pp. 1059–1064.

    Google Scholar 

  • Doviak R. J. and Zrnic D. S. (1984). Doppler radar and weather observation. Academic Press, Orlando, FL, 458 pp.

    Google Scholar 

  • Droppleman J. D. (1970). Apparent microwave emissivity of sea foam. J. Geophysical Research, Vol. 75, No. 3, pp. 696–698.

    Google Scholar 

  • Egorov B. P. (1977). The parameters of drop-spray clouds developed during strong surf. Trudy Glavnoi Geophysical Observatory (Proceedings of the Main Geophysical Observatory), Issue 399, pp. 136–145 [in Russian].

    Google Scholar 

  • Fante R. (1984). Detection of multiscatter targets in K-distributed clutter. IEEE Trans. on AP, Vol. 32, No. 12, pp. 1358–1363.

    Article  Google Scholar 

  • Feller W. (1971). An introduction to probability theory and its applications, Vol. II. Wiley, New York, 478 pp.

    Google Scholar 

  • Frisch U. (1995). Turbulence: The legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, UK, 350 pp.

    Google Scholar 

  • Frouin R., Iacobelllis S. F., Deschamps P. Y. (2001). Influence of oceanic whitecaps on the global radiation budget. Geophysical Research Letters, Vol. 28, No. 8, pp. 1523–1526.

    Article  Google Scholar 

  • Glazman R. E. (1991a). Statistical problems of wind-generated gravity waves arising in microwave remote sensing of surface winds. IEEE Trans. on Geoscience and Remote Sensing, Vol. 29, No. 1, pp. 135–142.

    Article  Google Scholar 

  • Glazman R. E. (1991b). Reply. Journal Geophysical Research, Vol. 96. No. C3, pp. 4979–4983.

    Google Scholar 

  • Glazman R. E. and Weichman P. B. (1989). Statistical geometry of a small surface patch in a developed sea. Journal Geophysical Research, Vol. 94. No. C4, pp. 4998–5010.

    Google Scholar 

  • Glazman R. E. and Weichman P. B. (1990). Reply to comments by E. C. Monahan on “Statistical geometry of a small surface patch in a developed sea”. Journal of Geophysical Research, Vol. 95. No. C2, pp. 1771–1773.

    Google Scholar 

  • Gradshteyn I. S. and Ryzhik I. M. (2000). Tables of Integrals, Series, and Products, 6th Edition (edited by A. Jeffrey and D. Zwillinger). Academic Press, Orlando, FL, 1163 pp.

    Google Scholar 

  • Grushin V. A., Il’in Yu. A., Lazarev A. A., Lupyan E. A., Malinnikov V. A., Pokrovskaya I. V., Skachkov V. A., Suslov A. I., Stulov A. A., Sharkov E.A. (1990). Simultaneous optical and in-situ studies of the spatio-spectral characteristics of wind-driven waves. Sov. J. Remote Sensing, Vol. 6, No. 2, pp. 211–229.

    Google Scholar 

  • Hayami S. and Toba Y. (1957). Drop production by bursting air bubbles on the sea surface. I: Experiments at still water surface. J. Oceanogr. Soc. Japan, Vol. 14, No. 2, pp. 145–150.

    Google Scholar 

  • Holliger J. P. (1971). Passive microwave measurements of sea surface roughness. IEEE Trans. Geoscience Electronics, Vol. 9, No. 3, pp. 165–169.

    Article  Google Scholar 

  • Horne R. A. (1969). Marine chemistry: The structure of water and the chemistry of the hydrosphere. Wiley-Interscience, New York, 398 pp.

    Google Scholar 

  • Hu J., Gao J., Posner F. L., Zheng Y., Tung W. W. (2006). Target detection within sea clutter: A comparative study by fractal scaling analyses. Fractals. Vol. 14, No. 3, pp. 187–204.

    Article  Google Scholar 

  • Hulst C. H. van de (1981). Light scattering by small particles. Dover Publications, New York, 470 pp.

    Google Scholar 

  • Ishimaru A. (1978). Wave propagation and scattering in random media, Vols. I and II. Academic Press, New York, 540 pp.

    Google Scholar 

  • Ivazyn G. M. (1991). Propagation of millimeter and submillimeter wavelengths in clouds. Gidrometeoizdat, Leningrad, 478 pp. [in Russian].

    Google Scholar 

  • Jameson A. R. (1991). The effect of drop-size distribution variability on radiometric estimates of rainfall rates for frequencies from 3 to 10 GHz. J. Applied Meteorology, Vol. 30, No. 7, pp. 1025–1033.

    Article  Google Scholar 

  • Johnson N. L. and Leone F. C. (1977) Statistics and experimental design in engineering and the physical sciences. Wiley, New York, 610 pp.

    Google Scholar 

  • Kalmykov A. I., Kurekin A. S., Lementa Yu. A., Ostrovskii I. E., Pustovoytenko V.V. (1976). Peculiarities of scattering of microwave radiation by attacked sea waves. Radiophysics and Quantum Electronics, Vol. 19, No. 9, pp. 1315–1321.

    Article  Google Scholar 

  • Kanevsky M. B. (2004). Theory of radar imaging of the ocean surface. Institute of Applied Physics, Russian Academy of Sciences, Nizhniy Novgorod, 124 pp.

    Google Scholar 

  • Karlin S. (1968). A first course in stochastic processes. Academic Press, New York, 538 pp.

    Google Scholar 

  • Kazevich R. S., Tang C. H., Henriksen S. W. (1972). Analysis and optical processing of sea photographs for energy spectra. IEEE Trans. Geoscience and Electronic, Vol. 10, No. 1, pp. 51–57.

    Article  Google Scholar 

  • Kerker M. (1969). The scattering of light. Academic Press, New York, 350 pp.

    Google Scholar 

  • Khusu A. P., Vitenberg Y. R., Palmov V. A. (1975). The roughness of surfaces (theoreticprobability approach). Nauka, Moscow, 344 pp.

    Google Scholar 

  • Kitaigorodskii S. A. (1973). Physics of airsea interaction. Israel Program for Scientific Translation, Jerusalem, 210 pp.

    Google Scholar 

  • Kitaigorodskii S. A. (1997). Effect of breaking of wind-generated waves on the local atmosphere-ocean interaction. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics— Engl. Transl.), Vol. 33, No. 6, pp. 828–836.

    Google Scholar 

  • Kitaigorodskii S. A. (2001). New evidence for the action of the process of nonlinear wind waves breaking on an increase in the kinetic energy dissipation within the sea upper layer. Doklady Acad. Nauk (Trans. of Russian Academy of Sciences— Engl. Trans.), Vol. 376, No. 4, pp. 539–542.

    Google Scholar 

  • Koga M. (1981) Direct production of droplets from breaking wind-generated waves: Its observation by a multicolored overlapping exposure photographic technique. Tellus, Vol. 33, No. 6, pp. 552–563.

    Google Scholar 

  • Koga M. (1982). Bubble entrainment in breaking wind-generated waves. Tellus, Vol. 34, No. 5, pp. 481–489.

    Article  Google Scholar 

  • Kokhanovsky A. A. (2004). Spectral reflectance of whitecaps. J. Geophys. Research, Vol. 109, C05021, doi:101029/2003JC002177.

    Article  Google Scholar 

  • Kollias P., Lhermitte R., Albrecht B. A. (1999). Vertical air motion and raindrop size distributions in convective systems using a 94 GHz radar. Geophysical Research Letters, Vol. 26, No. 20, pp. 3109–3112.

    Article  Google Scholar 

  • Kondratyev K. Ya., Rabinovich Yu. I., Nordberg W. (eds.) (1975). USSR/USA Bering Sea experiment proceedings of the final symposium on the joint results of the joint Soviet-American expedition, Leningrad, May 12–17, 1974. Gidrometeoizdat, Leningrad, 254 pp.

    Google Scholar 

  • Korn G. A. and Korn T. M. (1961). Mathematical handbook for scientists and engineers: Definitions, theorems and formulas for reference and review. McGraw-Hill, New York, 720 pp.

    Google Scholar 

  • Krasilnikov N. I. (1987). Dispersion and breaking of gravitation waves in fluid. Doklady Acad. Nauk SSSR (Trans. of USSR Academy of Sciences— Engl. Transl.), Vol. 294, No. 3, pp. 592–594.

    Google Scholar 

  • Krasilnikov N. I., Lebedev V. B., Khapaev M. M., Gribov B. E. (1986). Computer simulation for sea waves breakings. Preprint No. Pr-1095. Space Research Institute, Moscow, 29 pp. [in Russian].

    Google Scholar 

  • Krasiuk N. P. and Rosenberg V. I. (1970). Shipborne radiolocation and meteorology. Sudostroenie, Leningrad, 324 pp. [in Russian].

    Google Scholar 

  • Kutateladze S. S. and Styrikovich M. A. (1976) Hydrodynamics of gasliquid systems. Energiya, Moscow, 296 pp.

    Google Scholar 

  • Kwoh D. S. and Lake B. M. (1985). The nature of microwave backscattering from water waves. In: Ocean surface: Wave breaking, turbulent mixing and radio probing. Dordrecht, The Netherlands, pp. 249–256.

    Google Scholar 

  • Lai J. R. and Shemdin O.H. (1974). Laboratory study of the generation of spray over water. J. Geophysical Research, Vol. 79, No. 21, pp. 3055–3063.

    Google Scholar 

  • Lakhtakia A., Messier R., Varadan V. V., Varadan V. K. (1987 ) Fractal dimension from the back-scattering cross section. J. Phys. A: Math. Gen., Vol. 20, pp. 1615–1619.

    Article  Google Scholar 

  • Landau L. D. and Lifshitz E. M. (1957). Electrodynamics of continuous media. Gostechizdat, Moscow, 340 pp. [in Russian] (Engl. Transl.: Pergamon, Oxford, UK, 1960, 350 pp.).

    Google Scholar 

  • Lappo S. S., Gulev S. K., Rozhdrestvenskii A. E. (1990). The large scale thermal interaction in the oceanatmosphere system and the energyactive zones of the World Ocean. Hydrometeoizdat, Leningrad, 336 pp. [in Russian].

    Google Scholar 

  • Lavrova N. P. and Stestenko A. F. (1981). Aerial photography: Aerophotography instruments. Nedra, Moscow, 297 pp. [in Russian].

    Google Scholar 

  • Levich V. (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ, 340 pp.

    Google Scholar 

  • Lewis B. and Olin I. (1980). Experimental study and theoretical model of high-resolution radarbackscatter from the sea. Radio Science, Vol. 15, No. 4, pp. 815–828.

    Google Scholar 

  • Lhermitte R. M. (1988). Cloud and precipitation remote sensing at 94 GHz. IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 3, pp. 207–216.

    Article  Google Scholar 

  • Liu P. (1993). Estimating breaking wave statistics from wind-wave time series data. Annales Geophysicae, Vol. 11. No. 10. pp. 970–972.

    Google Scholar 

  • Longuet-Higgins M. S. (1969). On wave breaking and the equilibrium spectrum of wind generating waves. Proc. Roy. Soc. A., Vol. 310. No. 1501, pp. 151–159.

    Article  Google Scholar 

  • Longuet-Higgins M. S. and Turner J.S. (1974). An entraining plume model of a spilling breaker. J. Fluid Mech., Vol. 63, No. 1, pp. 1–20.

    Article  Google Scholar 

  • Lovejoy S. (1982). Area-perimeter relation for rain and cloud areas. Science, Vol. 219, No. 9, pp. 185–187.

    Article  Google Scholar 

  • Lovejoy S. and Mandelbrot B. B. (1985). Fractal properties of rain and a fractal model. Tellus, Vol. 37A, pp. 205–232.

    Google Scholar 

  • Lovejoy S. and Schertzer D. (1985). Generalized scale invariance in the atmosphere and fractal models of rain. Water Resources Research, Vol. 21, No. 8, pp. 1233–1250.

    Google Scholar 

  • Lubyako L. V. and Parshin V.V. (1986). The use of a 2-mm scatterometer for revealing the statistical characteristics of signals scattered by sea surface. In: Allunion conf. on statistical methods for processing remote sensing data. Theses of reports, Riga, Latvia, pp. 100 [in Russian].

    Google Scholar 

  • Lupyan E. A. and Sharkov E. A. (1990 ). Figures of merit for rough sea surface reflectance from optical images. Sov. J. Remote Sensing, Vol. 6, No. 2, pp. 230–245.

    Google Scholar 

  • MacIntyre F. (1972). Flow patterns in breaking bubbles. J. Geophysical Research, Vol. 77, No. 27, pp. 5211–5228.

    Google Scholar 

  • Malinovskii V. V. (1991). Estimation of the interaction between the statistical characteristics of a radar signal scattered by the sea surface at grazing angles and the characteristics of breaking sea waves. Morskoi Hydrophysical Journal (Physical Oceanography— Engl. Transl.), No. 6, pp.32–41 [in Russian].

    Google Scholar 

  • Mandelbrot B. (1982) The fractal geometry of nature. Freeman & Co., New York, 461 pp.

    Google Scholar 

  • Marmorino G. O. and Smith G. B. (2005). Bright and dark whitecaps observed in the infrared. Geophysical Research Letters, Vol. 32, L11604, doi:10.1029/2005GL0231766.

    Article  Google Scholar 

  • Martsinkevich L. B. and Melentyev V.V. (1975). Model calculations of sea surface thermal emission for a still sea state. Trudy GGO (Trans. Main Geophys. Observatory), No. 331, pp. 73–85 [in Russian].

    Google Scholar 

  • Matveyev D. T. (1971). On the spectrum of the microwave radiation of the wavy sea surface. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics— Engl. Transl.), Vol. 7, No. 10, pp. 1070–1083.

    Google Scholar 

  • Matveyev D. T. (1978). Analysis of results from radiothermal sounding the sea surface in a storm. Meteorologia i hydrologia (Russian Meteorology and Hydrology— Engl. Transl.), No. 4, pp. 58–66.

    Google Scholar 

  • Meischner P. (1990). Cloud dynamics and cloud microphysics by radar measurements, ESA SR-301. ESA, Noordwijk, The Netherlands, pp. 19–26.

    Google Scholar 

  • Melnichuk Y. V. and Chernikov A.A. (1971). The spectra of radar signals from sea surface under various radiation reception polarizations. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 7, No. l, pp. 28–40.

    Google Scholar 

  • Miyake Y. and Abe T. (1948). A study on the foaming of sea water. J. Mar. Res., Vol. 7, No. 2, pp. 67–73.

    Google Scholar 

  • Militskii Y. A., Raizer V. Y., Sharkov E. A., Etkin V. S. (1976). On scattering microwave emission by foamy structures. Pisma v JTF (Journal Technical Physics Letters—Engl. Transl.), Vol. 2, No. 18, pp. 851–855.

    Google Scholar 

  • Militskii Y. A., Raizer V. Y., Sharkov E. A., Etkin V. S. (1977). Scattering microwave radiation by foamy structures. Radiotechnika i electronica (J. of Communie. Techn. Electronics—Engl. Transl.), Vol. 22, No. 11, pp. 2299–2304.

    Google Scholar 

  • Militskii Y.A., Raizer V. Y., Sharkov E. A., Etkin V. S. (1978). On thermal emission of foamy structures. Jour. Technicheskoi Fiziki (Journal Technical Physics—Engl. Transl.), Vol. 48, No. 5, pp. 1031–1033.

    Google Scholar 

  • Monahan E. C. (1968). Sea spray as a function of low elevation speed. J. Geophysical Research, Vol. 73, No. 4, pp. 1127–1137.

    Google Scholar 

  • Monahan E. C. (1971). Oceanic whitecaps. J. Phys. Oceanography, Vol. 1. No. 2. pp. 139–144.

    Article  Google Scholar 

  • Monahan E. C. (1990). Comment to “Statistical geometry of a small surface patch in a develoed sea”, by R. E. Glazman and P. B. Weichman. J. Geophys. Research, Vol. 95, No. C2, 1768–1770.

    Google Scholar 

  • Monahan E. C. (2001). Whitecaps and foam. In: Encyclopedia of Ocean Sciences (edited by J. Steele, S. Thorpe, and K. Turekian). Elsevier, New York, pp. 3213–3219.

    Google Scholar 

  • Monahan E. C. and Zietlow C. R. (1969). Laboratory comparisons of fresh-water and salt-water whitecaps. J. Geophysical Research, Vol. 74, No. 28, 6961–6966.

    Google Scholar 

  • Monahan E. C., Davidson K. L., and Spiel D. E. (1982). Whitecap aerosol productivity deduced from simulation tank measurements. J. Geophysical Research, Vol. 87, No. C11, pp. 8898–8904.

    Google Scholar 

  • Moor R. and Fung A.K. (1979). Radar determination of wind of sea. Proc. IEEE, Vol. 67, No. 11, pp. 1504–1521.

    Google Scholar 

  • Mouche A. A., Hauser D., Kudryavtsev V. (2006). Radar scattering of the ocean surface and sea-roughness properties: A combined analysis from dual-polarization airborne radar observations and models in C band. J. Geophysical Research, Vol. 111, C09004, doi:10.1029/2005JC003166.

    Article  Google Scholar 

  • Nigmatulin R. I. (1978). Foundations of mechanics of heterogeneous mixtures. Nauka, Moscow, 250 pp. [in Russian].

    Google Scholar 

  • Nordberg W., Conaway J., Ross D. B., Wilheit T. (1971). Measurements of microwave emission from a foam-covered, wind-driven sea. J. Atmos. Science, Vol. 28, No. 6, pp. 1971–1978.

    Google Scholar 

  • Ochi M. and Tsai C. H. (1983). Prediction of occurrence of breaking waves in deep water. J. Physical Oceanography, Vol. 13, No. 11, pp. 2008–2019.

    Article  Google Scholar 

  • Odelevskii V. I. (1951). The dielectric properties of heterogeneous mixtures. Journal Technicheskoi Fiziki (Journal of Technical Physics), Vol. 21, No. 6, pp. 667–673 [in Russian].

    Google Scholar 

  • Oguchi T. (1983). Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE, Vol. 71, No. 9, pp. 1029–1078.

    Google Scholar 

  • Okuda S. and Hayami S. (1959). Experiments on evaporation from a wavy water surface. Rec. Oceanogr. Works in Japan, Vol. 5, No. 1, 6–13.

    Google Scholar 

  • Ozisik M. N. (1973). Radiative transfer and interactions with conduction and convection. Wiley, New York, 450 pp.

    Google Scholar 

  • Papadimitrakis Y. A. (2005a). On the probability of wave breaking in deep waters. Deep-Sea Research, Part II, Vol. 52, pp. 1246–1269.

    Article  Google Scholar 

  • Papadimitrakis Y. A. (2005b). Momentum and energy exchange across an air-water interface: Partitioning (into waves and currents) and parameterization. Deep-Sea Research, Part II, Vol. 52. pp. 1270–1286.

    Article  Google Scholar 

  • Pasqualicci F. (1984). Drop size distribution measurements in convective storms with a vertical pointing 35 GHz Doppler radar. Radio Science, Vol. 19, No. 1, pp. 177–183.

    Google Scholar 

  • Phillips O. M. (1977). The dynamics of the upper ocean. Cambridge University Press, London, 336 pp.

    Google Scholar 

  • Phillips O. M. (1988). Radar return from sea surface: Bragg scattering and breaking waves. J. Phys. Oceanogr., Vol. 18, No. 8, pp. 1065–1074.

    Article  Google Scholar 

  • Phillips O. M., Posner F. L., Hansen J. P. (2001). High range resolution radar measurements of speed distribution of breaking events in wind-generation ocean waves: Surface impulse and wave energy dissipation rates. J. Phys. Oceanogr., Vol. 31, No. 4, pp. 450–460.

    Article  Google Scholar 

  • Pierson W. J. and Moskowitz L. (1964). A proposed spectral model for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophysical Research, Vol. 69, pp. 5181–5190.

    Google Scholar 

  • Pokrovskaya I. V. and Sharkov E. A. (1986). Spatio-statistical properties of whitecap fields on sea surface with optical remote sensing. Earth Research from Space (Sov. J. Remote Sensing—Engl. Transl.), No. 5, pp. 18–25.

    Google Scholar 

  • Pokrovskaya I. V. and Sharkov E. A. (1987a). Foam activity on the sea surface as Markov random process. Doklady Acad. Nauk SSSR (Trans. of USSR Acad. of Sciences/Earth Science Section—Engl. transl.), Vol. 293, No. 5, pp. 1108–1111.

    Google Scholar 

  • Pokrovskaya I. V. and Sharkov E. A. (1987b). Optical remote sensing study of breaking gravity wave activity with developing sea roughness. Earth Research from Space (Sov. J. Remote Sensing—Engl. Transl.), No. 3, pp. 11–22.

    Google Scholar 

  • Pokrovskaya I. V. and Sharkov E. A. (1994). Optical remote studies of the azimuth characteristics of the breaking of sea gravity waves. Sov. J. Remote Sensing, Vol. 11, No. 2, pp. 311–318.

    Google Scholar 

  • Preobrazhensky L. Y. (1972). Estimation of droplet concentration in the near-surface atmosphere layer. Trudy Glavnoi Geophysical Obsevatory (Proceedings of the Main Geophysical Observatory), Issue 282, pp. 194–199 [in Russian].

    Google Scholar 

  • Raizer V. Yu. and Novikov V. M. (1990). The fractal properties of breaking surface waves zones in ocean. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 26, No. 6, pp. 664–668.

    Google Scholar 

  • Raizer V. Yu. and Sharkov E. A. (1980). On dispersal structure of sea foam. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 16, No. 7, pp. 772–776.

    Google Scholar 

  • Raizer V. Yu. and Sharkov E. A. (1981). Electrodynamic description of densely packed dispersed media. Radiophysics and Quantum Electronics, Vol. 24, No. 7, pp. 553–560.

    Article  Google Scholar 

  • Raizer V. Yu., Sharkov E. A., Etkin V. S. (1975a). Influence of temperature and salinity on the radioemission of a smooth ocean surface at decimeter and meter bands. Izvestiya Akad. Nauk USSR, Fizika Atm. Okeana (Izvestya. Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 11, No. 6, pp. 652–655.

    Google Scholar 

  • Raizer V. Yu., Sharkov E. A., Etkin V. S. (1975b). On the thermal radioemission of sea surface with oil pollution. Preprint No. Pr-237. Space Research Institute, Moscow, 15 pp. [in Russian].

    Google Scholar 

  • Raizer V. Yu., Sharkov E. A., Etkin V. S. (1976). Sea foam. Physico-chemical properties. Emissive and reflective characteristics. Preprint No. Pr-306. Space Research Institute, Moscow, pp. 25. [in Russian].

    Google Scholar 

  • Raizer V. Yu., Novikov V. M., Bocharova T. Y. (1994). The geometrical and fractal properties of visible radiances associated with breaking waves in the ocean. Ann. Geophysicae, Vol. 12, pp. 1229–1233.

    Article  Google Scholar 

  • Rozenberg G. V. (1958). The optics of thin-walled coating. Fizmatgiz, Moscow, 250 pp.

    Google Scholar 

  • Rozenberg G. V. (1972). The electromagnetic emission scattering and absorption by atmospheric particles. Hydrometeoizdat, Leningrad, 270 pp.

    Google Scholar 

  • Rosenkranz P. W. and Staelin D. (1972). Microwave emissivity of ocean foam and its effect on nadiral radiometric measurements. J. Geophys. Research, Vol. 77, No. 33, pp. 6528–6538.

    Google Scholar 

  • Roshkov V. A. (1979). Methods of probability analysis for oceanic processes. Hydrometeoizdat, Leningrad, 279 pp. [in Russian].

    Google Scholar 

  • Ross D. and Cordon V. (1974) Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. J. Geophys. Res., Vol. 79. No. 3. pp. 444–452.

    Google Scholar 

  • Ruben D. L. (1977). A water droplet concentration measuring device for use over the ocean. AIAA Paper, No. 305, 5 pp.

    Google Scholar 

  • Rytov S. M., Kravtsov Yu. A., Tatarskii V. I. (1978). Introduction to statistical radiophysics, Part II: Random fields. Nauka, Moscow, 462 pp. [in Russian].

    Google Scholar 

  • Sabinin K. and Serebryany A. (2005). Intense short-period internal waves in the ocean. J. Marine Research, Vol. 63, No. 1, pp. 227–261.

    Article  Google Scholar 

  • Sagdeev R. Z., Stiller H., Ziman Y. L. (eds.) (1980). Soyuz-22 observes the Earth. Nauka, Moscow, 231 pp. [in Russian].

    Google Scholar 

  • Samoilenko V. S., Matveev D. T., Semenchenko B. A. (1974). Materials for quantitative estimation of sea surface coverage by foam. In: TROPEX-72. Hydrometeoizdat, Leningrad, pp. 582–659 [in Russian].

    Google Scholar 

  • Sharkov E. A. (1993a). Spatial features of sea wave breaking fields. Symposium on the Air-Sea Interface, Marseilles, France, June 24–30, 1993, Abstracts, pp. 21.

    Google Scholar 

  • Sharkov E. A. (1993b). Scaling properties of sea wave breaking fields. Annales Geophysicae, Part II, Suppl. II to Vol. 11, pp. C310.

    Google Scholar 

  • Sharkov E. A. (1994). Experimental investigations of lifetimes for the breaking wave disperse zone. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 30, No. 6, pp. 844–847.

    Google Scholar 

  • Sharkov E. A. (1995). Optical investigations of temporal evolution of foam structures on sea surface. Earth Obs. Rem. Sens., Vol. 12, No. 1, pp. 88–101.

    Google Scholar 

  • Sharkov E. A. (1996a). The nonlinear evolution of breaking sea gravity waves. Annales Geophysicae, Suppl. II to Vol. 14, Part II, pp. C542.

    Google Scholar 

  • Sharkov E. A. (1996b) Wave breaking as the springs of air-sea gas transfer. PORSEC 96: Pacific Ocean Remote Sensing Conference, Victoria, Canada, Abstracts, pp. 123.

    Google Scholar 

  • Sharkov E. A. (1998) Remote Sensing of Tropical Regions. Wiley/Praxis, Chichester, UK, 320 pp. (ISBN 0-471-97171-5).

    Google Scholar 

  • Sharkov E. A. (2000). Global Tropical Cyclogenesis. Springer/Praxis, Chichester, UK, 370 pp.

    Google Scholar 

  • Sharkov E. A. (2003) Passive Microwave Remote Sensing of the Earth: Physical Foundations. Springer/Praxis, Chichester, UK, 613 pp. (ISBN 3-540-43946-3).

    Google Scholar 

  • Sharkov E. A. and Bondur V. G. (1993). Statistical characteristics of linear and area geometry of foam structures on a disturbed sea surface. Symposium on the Air-Sea Interface, Marseilles, France, June 24–30, 1993, Abstracts, pp. 177.

    Google Scholar 

  • Shibata A., Uji T., Isozaki I. (1985). Doppler spectra of microwave radar echo returned from calm and rough sea surface. In: Ocean surface: Wave breaking, turbulent mixing and radio probing. Dordrecht, The Netherlands, pp. 263–268.

    Google Scholar 

  • Shiotsuki Y. (1976). An estimation of dropsize distribution in the severe rainfall. J. Met. Soc. Japan, Vol. 54, No. 4, pp. 259–263.

    Google Scholar 

  • Shlaychin V. M. (1987). The probability models of non-Rayleigh fluctuations for radar signals. Radiotechnika i electronica (J. of Communic. Techn. Electronics—Engl. Transl.), Vol. 32, No. 9, pp. 1793–1817.

    Google Scholar 

  • Shulgina E. M. (1972). Calculation of emissivity of disturbed sea surface at microwave band. Izvestia AN. Fizika atmosphery i okeana (Izvestiya. Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 8, No. 7, pp. 773–776.

    Google Scholar 

  • Skolnik M. I. (1980). Introduction to radar systems. McCraw-Hill, New York, 450 pp.

    Google Scholar 

  • Sletten M. A., West J. C., Liu X., and Duncan J. H. (2003). Radar investigations of breaking water waves at low grazing angles with simultaneous high-speed optical imagery. Radio Science, Vol. 38, No. 6, p. 1110, doi:10.1029/2002RS0027166.

    Article  Google Scholar 

  • Snyder R. L. and Kennedy R. M. (1983). On the formation of whitecaps by a threshold mechanism. Part I: Basic formalism. J. Phys. Oceanography, Vol. 13, No. 8, pp. 1482–1492.

    Article  Google Scholar 

  • Smith P. M. (1988). The emissivity of sea foam at 19 and 37 GHz. IEEE Trans. Geoscience and Remote Sensing., Vol. 26, No. 5, pp. 541–547.

    Article  Google Scholar 

  • Spiridonov Y. G. and Pichugin A. P. (1984). The influence of meteosituations on characteristic radar images of the terrestrial surface from space. Earth Obs. Rem. Sens., No. 6, pp. 21–27.

    Google Scholar 

  • Stogryn A. (1972). The emissivity of sea foam at microwave frequencies. J. Geophys. Research, Vol. 77, No. 9, pp. 1658–1666.

    Google Scholar 

  • Stratton J. A. (1941). Electromagnetic theory. McGraw-Hill, New York, 615 pp.

    Google Scholar 

  • Takahashi T. (1978). Raindrop size distribution with collision breakup in an axisymmetric warm cloud model. J. Atmosph. Science, Vol. 35, No. 8, pp. 1549–1553.

    Article  Google Scholar 

  • Tang C. C. H. (1974) The effect of droplets in the air-sea transition zone on the sea brightness temperature. J. Physical Oceanography, Vol. 4, No. 11, 579–593.

    Article  Google Scholar 

  • Tedesco R. and Blanchard D. C. (1979). Dynamics of small bubble motion and bursting in freshwater. J. Rech. Atmos., Vol. 13, No. 3, pp. 215–226.

    Google Scholar 

  • Teich M. C. and Diament P. (1989). Multiple stochastic representations for K distributions and their Poisson transforms. J. Opt. Soc. Am. A, Vol. 6, No. 1, pp. 80–91.

    Article  Google Scholar 

  • Thorpe S. A. (1982). On the cloud of bubbles formed by breaking wind-generated waves in deep water and their role in air-sea gas transfer. Phil. Trans. Roy. Soc., Vol. 304A, No. 1483, pp. 155–251.

    Article  Google Scholar 

  • Thorpe S. A. and Humphries P. N. (1980). Bubbles and breaking waves. Nature, Vol. 283, No. 57746, pp. 463–465.

    Article  Google Scholar 

  • Tikhomirov V. K. (1975). Foams: Theory and practice of their production and destruction. Khimia, Moscow, 320 pp. [in Russian].

    Google Scholar 

  • Tikhonov V. I. (1970). The overshoots in random processes. Nauka, Moscow, 392 pp. [in Russian].

    Google Scholar 

  • Timofeev P. V. and Sharkov E.A. (1992). Field optical measurements of the dispersive zone of sea wave breaking. Preprint No. Pr-1841. Space Research Institute, Moscow, pp. 34. [in Russian].

    Google Scholar 

  • Toba Y. (1962). Drop production by the bursting of air bubbles on the sea surface. III: Study by use of a wind plume. J. Met. Soc. Japan, Vol. 40, No. 1, pp. 13–17.

    Google Scholar 

  • Varadan V. K., Bringi V. N., Varadan V. V., Ishimaru A. (1983). Multiple scattering theory for waves in discrete random media and comparision with experiments. Radio Science, Vol. 18, No. 3, pp. 321–327.

    Google Scholar 

  • Veselov V. M., Davydov A. A., Skachkov V. A., Chernyi I.V., Volyak K. I. (1984). Ship-board remote microwave measurements of internal waves. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 20, No. 3, pp. 308–317.

    Google Scholar 

  • Vinje T. and Brevig P. (1981). Numerical simulation of breaking waves. Advanced Water Resources, Vol. 4, No. 6, pp. 77–82.

    Article  Google Scholar 

  • Volkov Y. A. (1968) The analysis of spectra for sea waves developed by turbulent wind. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya, Atmospheric and Oceanic Physics— Engl. Transl.), Vol. 4, No. 9, pp. 968–987.

    Google Scholar 

  • Vorsin N. N., Glotov A. A., Mirovskii V. G., Raizer V. Y., Troizkii I. A., Sharkov E.A., Etkin V. S. (1984). Natural radioemissive measurements of sea foam structures. Sov. J. Remote Sensing, Vol. 2, No. 3, pp. 520–525.

    Google Scholar 

  • Wallis G. B. (1969). One-dimensional two-phase flow. McGraw-Hill, New York, 440 pp.

    Google Scholar 

  • Wang C. S. and Street R. L. (1978). Transfers across an air-water surface of high wind speeds: the effect of spray. J. Geophys. Res., Vol. 83, No. C6, 2959–2969.

    Google Scholar 

  • Weaire D. and Hutzier S. (2000). The physics of foams. Oxford University Press, Oxford, UK, 224 pp.

    Google Scholar 

  • Webster W. J., Wilheit T. T., Ross D. B., Gloersen P. (1976). Spectral characteristtics of the microwave emission from a wind-driven foam-covered sea. J. Geophysical Research, Vol. 81, No. 18, pp. 3095–3099.

    Google Scholar 

  • Williams G.F. (1969). Microwave radiometry of the ocean and the possibility of marine wind velocity determination from satellite observations. J. Geophysical Researh, Vol. 74, No. 18, pp. 4591–4610.

    Google Scholar 

  • Wu J. (1973). Spray in the atmospheric surface layer. J. Geophysical Research, Vol. 78, No. 3, pp. 511–519.

    Article  Google Scholar 

  • Wu J. (1979). Spray in the atmospheric surface layer: Review and analysis of laboratory and oceanic results. J. Geophysical Research, Vol. 84, No. 4, pp. 1693–1704.

    Google Scholar 

  • Wu J., Murray J., Lai R. (1984). Production and distribution of sea spray. J. Geophysical Research, Vol. 89, No. C5, pp. 8163–8169.

    Google Scholar 

  • Young I. R. and Babanin A. V. (2006). Spectral distribution of energy dissipation of windgenerated waves due to dominant wave breaking. J. Physical Oceanography, Vol. 36, No. 3, pp. 376–394.

    Article  Google Scholar 

  • Zacharov V. E. and Zaslavskii M.M. (1982). The kinetic equation and Kolmogorov’s spectra in the weak wind waves turbulence theory of wind waves. Izvestia Acad. Nauk. Fizika atmosphery i okeana (Izvestiya Acad.Sci. USSR. Atmospheric and Oceanic Physics—Engl. Transl.), Vol. 18, No. 9, pp. 970–979.

    Google Scholar 

  • Zaitsev Y. P. (1970). Sea Biology. Naukova Dumka, Kiev, 230 pp. [in Russian].

    Google Scholar 

  • Zappa C. J., Asher W. E., Jessup A. T., Klinke J., Long S. R. (2004). Microbreaking and the enhancement of air-water transfer velocity. J. Geophysical Research, Vol. 109, C08S16, doi:10.1029/2003JC001897.

    Article  Google Scholar 

  • Zaslavskii G. M. and Sagdeev R. Z. (1988). Introduction to nonlinear physics. Nauka, Moscow, 368 pp.

    Google Scholar 

  • Zaslavskii G. M. and Sharkov E. A. (1987). Fractal features in breaking wave areas on sea surface. Doklady Acad. Nauk SSSR (Trans. of USSR Academy of Sciences—Engl. Trans.), Vol. 294, No. 6, pp. 1362–1366.

    Google Scholar 

  • Zhang W., Perrie W., Li W. (2006). Impacts of waves and sea spray on midlatitude storm structure and intensity. Monthly Weather Review, Vol. 134, No. 9, pp. 2418–2442.

    Article  Google Scholar 

  • Zilitinkevich S. S., Monin A. S., Chalikov D. V. (1978). Interaction between the ocean and atmosphere. In: Ocean physics, Vol. 1.: Hydrophysics of the ocean. Nauka, Moscow. pp. 208–339. [in Russian].

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2007). Conclusions. In: Breaking Ocean Waves. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29828-1_9

Download citation

Publish with us

Policies and ethics