Genetic Counseling for Childhood Tumors and Inherited Cancer-Predisposing Syndromes

  • Edward S. Tobias
  • J. M. Connor


Chromosomal changes are common in all types of malignancy and are helpful for identification of the underlying pathogenesis and for prognostic assessment. These chromosomal changes usually occur after birth and are thus acquired rather than inherited. The cells at birth usually have normal chromosome constitutions (46, XY or 46, XX) and a variety of acquired changes are seen (Figs. 3.1–3.5) including loss or gain of chromosomes (in part or whole) and chromosome rearrangements. Loss of chromosomal material means that genes on the partner chromosome are unmatched and such loss of heterozygosity has been an important clue to the location of tumor suppressor genes. For example, cytogenetic analysis in neuroblastomas commonly reveals loss of the distal short arm of chromosome 1 and this area is believed to hold as yet uncloned tumor suppressor gene(s) for this tumor type. Table 3.1 lists examples of regions which show loss of heterozygosity (by cytogenetic or molecular analysis) with the associated childhood tumor types and names of the tumor suppressor genes where these have been cloned.


Familial Adenomatous Polyposis Autosomal Dominant Trait Nevoid Basal Cell Carcinoma Syndrome Childhood Tumor Sotos Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aman P, Panagopoulos I, Lassen C, et al. (1996) Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 37:1–8PubMedCrossRefGoogle Scholar
  2. 2.
    Janknecht R (2005) EWS-ETS oncoproteins: The linchpins of Ewing tumors. Gene 363:1–14PubMedCrossRefGoogle Scholar
  3. 3.
    Caron H, van Sluis P, van Hoeve M, et al. (1993) Allelic loss of chromosome Ip36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nature Genet 4:187–190PubMedCrossRefGoogle Scholar
  4. 4.
    Simi L, Sestini R, Ferruzzi P, et al. (2005) Phenotype variability of neural crest derived tumours in six Italian families segregating the same founder SDHD mutation Q109X. J Med Genet 42:e52PubMedCrossRefGoogle Scholar
  5. 5.
    Connor M, Ferguson-Smith M (1997) Essential medical genetics, 5th edn. Blackwell Science, OxfordGoogle Scholar
  6. 6.
    Harper PS (2004) Practical genetic counselling, 6th edn. Arnold, LondonGoogle Scholar
  7. 7.
    Hodgson SV, Maher ER, Eng C, Foulkes W (2006) A practical guide to human cancer genetics. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Gilchrist DM, Savard ML (1989) Ependymomas in two sisters and a maternal male cousin. Am J Hum Genet 45:A22Google Scholar
  9. 9.
    Yokota T, Tachizawa T, Fukino K, et al. (2003) A family with spinal anaplastic ependymoma: Evidence of loss of chromosome 22q in tumor. J Hum Genet 48:598–602PubMedCrossRefGoogle Scholar
  10. 10.
    Vieregge P, Gerhard L, Nahser HC (1987) Familial glioma: Occurrence within the “familial cancer syndrome” and systemic malformations. J Neurol 234:220–232PubMedCrossRefGoogle Scholar
  11. 11.
    Hirschman BA, Pollock BH, Tomlinson GE (2005) The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatr 147:263–266PubMedCrossRefGoogle Scholar
  12. 12.
    Hartley AL, Birch JM, Kelsey AM, et al. (1990) Epidemiological and familial aspects of hepatoblastoma. Med Paediatr Oncol 18:103–109CrossRefGoogle Scholar
  13. 13.
    Nagata T, Nakamura M, Shichino H, et al. (2005) Cytogenetic abnormalities in hepatoblastoma: Report of two new cases and review of the literature suggesting imbalance of chromosomal regions on chromosomes 1, 4, and 12. Cancer Genet Cytogenet 156:8–13PubMedCrossRefGoogle Scholar
  14. 14.
    Mack TM, Cozen W, Shibata DK, et al. (1995) Concordance for Hodgkins disease in identical twins suggesting genetic susceptibility to the young adult form of the disease. New Engl J Med 332:413–418PubMedCrossRefGoogle Scholar
  15. 15.
    Goldin LR, McMaster ML, Ter-Minassian M, et al. (2005) A genome screen of families at high risk for Hodgkin lymphoma: Evidence for a susceptibility gene on chromosome 4. J Med Genet 42:595–601PubMedCrossRefGoogle Scholar
  16. 16.
    Hung KL, Wu CM, Huang JS, How SW (1990) Familial medulloblastoma in siblings: Report of one family and review of the literature. Surg Neurol 33:341–346PubMedCrossRefGoogle Scholar
  17. 17.
    Amlashi SF, Riffaud L, Brassier G, Morandi X (2003) Nevoid basal cell carcinoma syndrome: Relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer 98:618–624PubMedCrossRefGoogle Scholar
  18. 18.
    De Vos M, Hayward BE, Picton S, et al. (2004) Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am J Hum Genet 74:954–964PubMedCrossRefGoogle Scholar
  19. 19.
    De Vos M, Hayward BE, Charlton R, et al. (2006) PMS2 mutations in childhood cancer. J Natl Cancer Inst 98:358–361PubMedCrossRefGoogle Scholar
  20. 20.
    Kushner BH, Gilbert F, Helson L (1986) Familial neuroblastoma: Case reports, literature review and etiologic considerations. Cancer 57:1887–1893PubMedCrossRefGoogle Scholar
  21. 21.
    O’Riordain DS, O’Connell PR, Kirwan WO (1991) Hereditary sacral agenesis with presacral mass and anorectal stenosis: The Currarino triad. Brit J Surg 78:536–538PubMedCrossRefGoogle Scholar
  22. 22.
    Lynch SA, Bond P, Copp AJ, et al. (1995) A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nature Genet 11:93–95PubMedCrossRefGoogle Scholar
  23. 23.
    Cretolle C, Zerah M, Jaubert F, et al. (2006) New clinical and therapeutic perspectives in Currarino syndrome (study of 29 cases). J Pediatr Surg 41:126–131; discussion 126–131PubMedCrossRefGoogle Scholar
  24. 24.
    Simon A, Ohel G, Neri A, Schenker JG (1985) Familial occurrence of mature ovarian teratomas. Obstet Gynecol 66:278–279PubMedGoogle Scholar
  25. 25.
    Gorlin RJ, Cohen MM Jr, Condon LM, Burke BA (1992) Bannayan-Riley-Ruvalcaba syndrome. Am J Med Genet 44:307–314PubMedCrossRefGoogle Scholar
  26. 26.
    Nagy R, Sweet K, Eng C (2004) Highly penetrant hereditary cancer syndromes. Oncogene 23:6445–6470PubMedCrossRefGoogle Scholar
  27. 27.
    Pilarski R, Eng C (2004) Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genet 41:323–326PubMedCrossRefGoogle Scholar
  28. 28.
    Hatada I, Ohashi H, Fukushima Y, et al. (1996) An imprinted gene p57(KIP2) is mutated in Beckwith-Wiedemann syndrome. Nature 14:171–173Google Scholar
  29. 29.
    Mueller RF (1994) The Denys-Drash syndrome. J Med Genet 31:471–477PubMedCrossRefGoogle Scholar
  30. 30.
    Little S, Hanks S, King-Underwood L, et al. (2005) A WT1 exon 1 mutation in a child diagnosed with Denys-Drash syndrome. Pediatr Nephrol 20:81–85PubMedCrossRefGoogle Scholar
  31. 31.
    Wicking C, Shanley S, Smyth I, et al. (1997) Most germline mutations in the nevoid basal cell carcinoma syndrome lead to a premature termination of the PATCHED protein, and no genotype-phenotype correlations are evident. Am J Hum Genet 60:21–26PubMedGoogle Scholar
  32. 32.
    Evans DGR, Ladusans EJ, Rimmer S, et al. (1993) Complications of the naevoid basal cell carcinoma syndrome: Results of a population based study. J Med Genet 30:460–464PubMedGoogle Scholar
  33. 33.
    Frebourg T, Barbier N, Yan Y, et al. (1995) Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome. Am J Hum Genet 56:608–615PubMedGoogle Scholar
  34. 34.
    Moule RN, Jhavar SG, Eeles RA (2006) Genotype phenotype correlation in Li-Fraumeni syndrome kindreds and its implications for management. Fam Cancer 5:129–133PubMedCrossRefGoogle Scholar
  35. 35.
    Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320PubMedCrossRefGoogle Scholar
  36. 36.
    Barlow JW, Mous M, Wiley JC, et al. (2004) Germ line BAX alterations are infrequent in Li-Fraumeni syndrome. Cancer Epidemiol Biomarkers Prev 13:1403–1406PubMedGoogle Scholar
  37. 37.
    Taconis WK (1988) Osteosarcoma in fibrous dysplasia. Skeletal Radiol 17:163–170PubMedCrossRefGoogle Scholar
  38. 38.
    Metzler M, Luedecke DK, Saeger W, et al. (2006) Low prevalence of Gs alpha mutations in somatotroph adenomas of children and adolescents. Cancer Genet Cytogenet 166:146–151PubMedCrossRefGoogle Scholar
  39. 39.
    Christman JE, Ballon SC (1990) Ovarian fibrosarcoma associated with Maffucci’s syndrome. Gynecol Oncol 37:290–291PubMedCrossRefGoogle Scholar
  40. 40.
    Hopyan S, Gokgoz N, Poon R, et al. (2002) A mutant PTH/ PTHrP type I receptor in enchondromatosis. Nat Genet 30:306–310PubMedCrossRefGoogle Scholar
  41. 41.
    Rozeman LB, Sangiorgi L, Briaire-de Bruijn IH, et al. (2004) Enchondromatosis (Ollier disease, Maffucci syndrome) is not caused by the PTHR1 mutation p.R150C. Hum Mutat 24:466–473PubMedCrossRefGoogle Scholar
  42. 42.
    Blanton SH, Hogue D, Wagner, et al. (1996) Hereditary multiple exostoses: Confirmation of linkage to chromosomes 8 and 11. Am J Med Genet 62:150–159PubMedCrossRefGoogle Scholar
  43. 43.
    Wicklund CL, Pauli RM, Johnston D, Hecht JT (1995) Natural history study of hereditary multiple exostoses. Am J Med Genet 55:43–46PubMedCrossRefGoogle Scholar
  44. 44.
    Vaccaro M, Guarneri C, Blandino A (2005) Trichorhinophalangeal syndrome. J Am Acad Dermatol 53:858–860PubMedCrossRefGoogle Scholar
  45. 45.
    Cheadle JP, Sampson JR (2003) Exposing the MYtH about base excision repair and human inherited disease. Hum Mol Genet 12:R159–R165PubMedCrossRefGoogle Scholar
  46. 46.
    Sampson JR, Dolwani S, Jones S, et al. (2003) Autosomal recessive colorectal adenomatous polyposis due to inherited mutations of MYH. Lancet 362:39–41PubMedCrossRefGoogle Scholar
  47. 47.
    Sieber OM, Lipton L, Crabtree M, et al. (2003) Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348:791–799PubMedCrossRefGoogle Scholar
  48. 48.
    Arun D, Gutmann DH (2004) Recent advances in neurofibromatosis type 1. Curr Opin Neurol 17:101–105PubMedCrossRefGoogle Scholar
  49. 49.
    Castle B, Baser ME, Huson SM, et al. (2003) Evaluation of genotype-phenotype correlations in neurofibromatosis type 1. J Med Genet 40:e109PubMedCrossRefGoogle Scholar
  50. 50.
    De Raedt T, Brems H, Wolkenstein P, et al. (2003) Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet 72:1288–1292PubMedCrossRefGoogle Scholar
  51. 51.
    Evans DG, Baser ME, O’Reilly B, et al. (2005) Management of the patient and family with neurofibromatosis 2: A consensus conference statement. Br J Neurosurg 19:5–12PubMedCrossRefGoogle Scholar
  52. 52.
    Greenberg F, Copeland K, Gresik MV (1988) Expanding the spectrum of the Perlman syndrome. Am J Med Genet 29:773–776PubMedCrossRefGoogle Scholar
  53. 53.
    Petkovic M, Dietschy T, Freire R, et al. (2005) The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118:4261–4269PubMedCrossRefGoogle Scholar
  54. 54.
    Larizza L, Magnani I, Roversi G (2006) Rothmund-Thomson syndrome and RECQL4 defect: Splitting and lumping. Cancer Lett 232:107–120PubMedCrossRefGoogle Scholar
  55. 55.
    Lindor NM, Devries EMG, Michels VV, et al. (1996) Rothmund-Thomson syndrome in siblings: Evidence for acquired in vivo mosaicism. Clin Genet 49:124–129PubMedCrossRefGoogle Scholar
  56. 56.
    Cole TRP, Hughes HE (1994) Sotos syndrome: A study of the diagnostic criteria and natural history. J Med Genet 31:20–32PubMedGoogle Scholar
  57. 57.
    Tatton-Brown K, Rahman N (2004) Clinical features of NSD1-positive Sotos syndrome. Clin Dysmorphol 13:199–204PubMedCrossRefGoogle Scholar
  58. 58.
    Lewis JC, Thomas HV, Murphy KC, Sampson JR (2004) Genotype and psychological phenotype in tuberous sclerosis. J Med Genet 41:203–207PubMedCrossRefGoogle Scholar
  59. 59.
    Sancak O, Nellist M, Goedbloed M, et al. (2005) Mutational analysis of the TSC 1 and TSC2 genes in a diagnostic setting: Genotype-phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 13:731–741PubMedCrossRefGoogle Scholar
  60. 60.
    Knudson AG (1993) All in the (cancer) family. Nature Genet 5:103–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Edward S. Tobias
    • 1
  • J. M. Connor
    • 1
  1. 1.Duncan Guthrie Institute of Medical GeneticsRoyal Hospital for Sick ChildrenYorkhill GlasgowScotland UK

Personalised recommendations