Skip to main content

Hematopoietic Stem Cells in Vascular Development and Ocular Neovascularization

  • Chapter

Abstract

Neovascular diseases of the eye include retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and the exudative or “wet” form of age-related macular degeneration (ARMD). Together these diseases affect all age groups and are the leading causes of vision impairment in developed nations [77].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J (2003) Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102:1249–1253

    PubMed  CAS  Google Scholar 

  2. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520

    PubMed  CAS  Google Scholar 

  3. Almeida-Porada G, Porada C, Zanjani ED (2004) Plasticity of human stem cells in the fetal sheep model of human stem cell transplantation. Int J Hematol 79:1–6

    PubMed  Google Scholar 

  4. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    PubMed  CAS  Google Scholar 

  5. Amet LE, Lauri SE, Hienola A, Croll SD, Lu Y, Levorse JM, Prabhakaran B, Taira T, Rauvala H, Vogt TF (2001) Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol Cell Neurosci 17:1014–1024

    PubMed  CAS  Google Scholar 

  6. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    PubMed  CAS  Google Scholar 

  7. Arai F, Hirao A, Suda T (2005) Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med 15:75–79

    PubMed  CAS  Google Scholar 

  8. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  9. Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K (2002) Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. Am J Pathol 160:2191–2205

    PubMed  CAS  Google Scholar 

  10. Auerbach R, Huang H, Lu L (1996) Hematopoietic stem cells in the mouse embryonic yolk sac. Stem Cells 14: 269–280

    PubMed  CAS  Google Scholar 

  11. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249

    PubMed  CAS  Google Scholar 

  12. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    PubMed  CAS  Google Scholar 

  13. Bamezai A, Palliser D, Berezovskaya A, McGrew J, Higgins K, Lacy E, Rock KL (1995) Regulated expression of Ly-6A.2 is important for T cell development. J Immunol 154:4233–4239

    PubMed  CAS  Google Scholar 

  14. Beauchamp MH, Sennlaub F, Speranza G, Gobeil F, Jr., Checchin D, Kermorvant-Duchemin E, Abran D, Hardy P, Lachapelle P, Varma DR, Chemtob S (2004) Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radic Biol Med 37: 1885–1894

    PubMed  CAS  Google Scholar 

  15. Bernstein A, Forrester L, Reith AD, Dubreuil P, Rottapel R (1991) ThemurineW/c-kit and Steel loci and the control of hematopoiesis. Semin Hematol 28:138–142

    PubMed  CAS  Google Scholar 

  16. Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, Godin I, Cumano A (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci U S A 102:134–139

    PubMed  CAS  Google Scholar 

  17. Blades MC, Ingegnoli F, Wheller SK, Manzo A, Wahid S, Panayi GS, Perretti M, Pitzalis C (2002) Stromal cell-derived factor 1 (CXCL12) induces monocyte migration into human synovium transplanted onto SCID Mice. Arthritis Rheum 46:824–836

    PubMed  CAS  Google Scholar 

  18. Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943

    PubMed  CAS  Google Scholar 

  19. Bradfute SB, Graubert TA, Goodell MA (2005) Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp Hematol 33:836–843

    PubMed  CAS  Google Scholar 

  20. Brazelton TR, Rossi FMV, Keshet GI, Blau HM (2000) From Marrow to Brain: Expression of Neuronal Phenotypes in Adult Mice. Science 290:1775–1779

    PubMed  CAS  Google Scholar 

  21. Bresnick GH, Engerman R, Davis MD, de Venecia G, Myers FL (1976) Patterns of ischemia in diabetic retinopathy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:OP694–709

    PubMed  CAS  Google Scholar 

  22. Camargo FD, Chambers SM, Goodell MA (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 37:55–65

    PubMed  CAS  Google Scholar 

  23. Camargo FD, Finegold M, Goodell MA (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 113:1266–1270

    PubMed  CAS  Google Scholar 

  24. Campbell JH, Tachas G, Black MJ, Cockerill G, Campbell GR (1991) Molecular biology of vascular hypertrophy. Basic Res Cardiol 86Suppl 1:3–11

    PubMed  CAS  Google Scholar 

  25. Cho CH, Kammerer RA, Lee HJ, Yasunaga K, Kim KT, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY (2004) Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci U S A 101:5553–5558

    PubMed  CAS  Google Scholar 

  26. Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, Devine S (2003) Stem cell mobilization. Hematology (Am Soc Hematol Educ Program) 419–437

    Google Scholar 

  27. Cumano A, Ferraz JC, Klaine M, Di Santo JP, Godin I (2001) Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15:477–485

    PubMed  CAS  Google Scholar 

  28. de Bruijn MF, Ma X, Robin C, Ottersbach K, Sanchez MJ, Dzierzak E (2002) Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16:673–683

    PubMed  Google Scholar 

  29. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–2474

    PubMed  Google Scholar 

  30. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M (2004) SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104:3472–3482

    PubMed  Google Scholar 

  31. Delassus S, Cumano A (1996) Circulation of hematopoietic progenitors in the mouse embryo. Immunity 4:97–106

    PubMed  CAS  Google Scholar 

  32. Dick JE, Magli MC, Huszar D, Phillips RA, Bernstein A (1985) Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42:71–79

    PubMed  CAS  Google Scholar 

  33. Driessen RL, Johnston HM, Nilsson SK (2003) Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp Hematol 31:1284–1291

    PubMed  CAS  Google Scholar 

  34. Ebbe S, Phalen E, Stohlman F, Jr. (1973) Abnormalities of megakaryocytes in W-WV mice. Blood 42:857–864

    PubMed  CAS  Google Scholar 

  35. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. PNAS 94:4080–4085

    PubMed  CAS  Google Scholar 

  36. Ema H, Nakauchi H (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95:2284–2288

    PubMed  CAS  Google Scholar 

  37. Ema H, Sudo K, Seita J, Matsubara A, Morita Y, Osawa M, Takatsu K, Takaki S, Nakauchi H (2005) Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 8:907–914

    PubMed  CAS  Google Scholar 

  38. Fanayan S, Firth SM, Baxter RC (2002) Signaling through the Smad pathway by insulin-like growth factor-binding protein-3 in breast cancer cells. Relationship to transforming growth factor-beta 1 signaling. J Biol Chem 277: 7255–7261

    PubMed  CAS  Google Scholar 

  39. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Google Scholar 

  40. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  41. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, 3rd, Klein R (2004) Retinopathy in diabetes. Diabetes Care 27Suppl 1:S84–87

    PubMed  Google Scholar 

  42. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    PubMed  CAS  Google Scholar 

  43. Garcia-Porrero JA, Godin IE, Dieterlen-Lievre F (1995) Potential intraembryonic hemogenic sites at pre-liver stages in the mouse. Anat Embryol (Berl) 192:425–435

    CAS  Google Scholar 

  44. Godin I, Cumano A (2002) The hare and the tortoise: an embryonic haematopoietic race. Nat Rev Immunol 2:593–604

    PubMed  CAS  Google Scholar 

  45. Godin I, Dieterlen-Lievre F, Cumano A (1995) Emergence of multipotent hemopoietic cells in the yolk sac and para-aortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci U S A 92:773–777

    PubMed  CAS  Google Scholar 

  46. Godin I, Garcia-Porrero JA, Dieterlen-Lievre F, Cumano A (1999) Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190:43–52

    PubMed  CAS  Google Scholar 

  47. Goh EL, Ma D, Ming GL, Song H (2003) Adult neural stem cells and repair of the adult central nervous system. J Hematother Stem Cell Res 12:671–679

    PubMed  Google Scholar 

  48. Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199:1443–1445

    PubMed  CAS  Google Scholar 

  49. Graf L, Iwata M, Torok-Storb B (2002) Gene expression profiling of the functionally distinct human bone marrow stromal cell lines HS-5 and HS-27a. Blood 100:1509–1511

    PubMed  CAS  Google Scholar 

  50. Grant MB, Caballero S, Brown GA, Guthrie SM, Mames RN, Vaught T, Scott EW (2003) The contribution of adult hematopoietic stem cells to retinal neovascularization. Adv Exp Med Biol 522:37–45

    PubMed  Google Scholar 

  51. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8:607–612

    PubMed  CAS  Google Scholar 

  52. Guthrie SM, Caballero S, Mames RN, Grant MB, Scott EW (2005) Analysis of the vascular potential of hematopoietic stem cells. Methods Mol Med 105:369–380

    PubMed  Google Scholar 

  53. Hackney JA, Charbord P, Brunk BP, Stoeckert CJ, Lemischka IR, Moore KA (2002) A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci USA 99: 13061–13066

    PubMed  CAS  Google Scholar 

  54. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 305:90–93

    PubMed  CAS  Google Scholar 

  55. Harrison DE (1993) Competitive repopulation in unirradiated normal recipients. Blood 81:2473–2474

    PubMed  CAS  Google Scholar 

  56. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360

    PubMed  CAS  Google Scholar 

  57. Herbrig K, Pistrosch F, Oelschlaegel U, Wichmann G, Wagner A, Foerster S, Richter S, Gross P, Passauer J (2004) Increased total number but impaired migratory activity and adhesion of endothelial progenitor cells in patients on long-term hemodialysis. Am J Kidney Dis 44:840–849

    PubMed  Google Scholar 

  58. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K (2004) Gene transfer of stromal cell-derived factor-1 alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109:2454–2461

    PubMed  CAS  Google Scholar 

  59. Ikuta K, Uchida N, Friedman J, Weissman IL (1992) Lymphocyte development from stem cells. Annu Rev Immunol 10:759–783

    PubMed  CAS  Google Scholar 

  60. Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89: 1502–1506

    PubMed  CAS  Google Scholar 

  61. Imanishi T, Hano T, Nishio I (2004) Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res 27:101–108

    PubMed  CAS  Google Scholar 

  62. Ishikawa F, Livingston AG, Minamiguchi H, Wingard JR, Ogawa M (2003) Human cord blood long-term engrafting cells are CD34+ CD38. Leukemia 17:960–964

    PubMed  CAS  Google Scholar 

  63. Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL (2003) Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 101:517–523

    PubMed  CAS  Google Scholar 

  64. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6:532–539

    PubMed  CAS  Google Scholar 

  65. Keller G, Paige C, Gilboa E, Wagner EF (1985) Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318:149–154

    PubMed  CAS  Google Scholar 

  66. Kiel MJ, Iwashita T, Yilmaz OH, Morrison SJ (2005) Spatial differences in hematopoiesis but not in stem cells indicate a lack of regional patterning in definitive hematopoietic stem cells. Dev Biol 283:29–39

    PubMed  CAS  Google Scholar 

  67. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou-Solomidou M, Janowska-Wieczorek A, Ratajczak MZ (2001) The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19:453–466

    PubMed  CAS  Google Scholar 

  68. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19: 4549–4552

    PubMed  CAS  Google Scholar 

  69. Kim SY, Park SY, Kim JM, Kim JW, Kim MY, Yang JH, Kim JO, Choi KH, Kim SB, Ryu HM (2005) Differentiation of endothelial cells from human umbilical cord blood AC133-CD14+ cells. Ann Hematol 84:417–422

    PubMed  CAS  Google Scholar 

  70. Kinnunen T, Raulo E, Nolo R, Maccarana M, Lindahl U, Rauvala H (1996) Neurite outgrowth in brain neurons induced by heparin-binding growth-associated molecule (HB-GAM) depends on the specific interaction of HB-GAM with heparan sulfate at the cell surface. J Biol Chem 271:2243–2248

    PubMed  CAS  Google Scholar 

  71. Kucia M, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97:133–146

    PubMed  CAS  Google Scholar 

  72. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19: 1118–1127

    PubMed  CAS  Google Scholar 

  73. Kusadasi N, Oostendorp RA, Koevoet WJ, Dzierzak EA, Ploemacher RE (2002) Stromal cells from murine embryonic aorta-gonad-mesonephros region, liver and gut mesentery expand human umbilical cord blood-derived CAFC(week6) in extended long-term cultures. Leukemia 16: 1782–1790

    PubMed  CAS  Google Scholar 

  74. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234.

    PubMed  CAS  Google Scholar 

  75. Lakshmipathy U, Verfaillie C (2005) Stem cell plasticity. Blood Rev 19:29–38

    PubMed  Google Scholar 

  76. Lee KW, Cohen P (2002) Nuclear effects: unexpected intracellular actions of insulin-like growth factor binding protein-3. J Endocrinol 175:33–40

    PubMed  CAS  Google Scholar 

  77. Lee P, Wang CC, Adamis AP (1998) Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 43: 245–269.

    PubMed  CAS  Google Scholar 

  78. Lee WY, Jin DK, Oh MR, Lee JE, Song SM, Lee EA, Kim GM, Chung JS, Lee KH (2003) Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol 60:858–863

    PubMed  Google Scholar 

  79. Lemischka I (2002) Rethinking somatic stem cell plasticity. Nat Biotechnol 20:425

    PubMed  CAS  Google Scholar 

  80. Libby P, Aikawa M, Kinlay S, Selwyn A, Ganz P (2000) Lipid lowering improves endothelial functions. Int J Cardiol 74Suppl 1:S3–S10

    PubMed  Google Scholar 

  81. Lord BI, Testa NG, Hendry JH (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46:65–72

    PubMed  CAS  Google Scholar 

  82. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci U S A 95:9448–9453

    PubMed  CAS  Google Scholar 

  83. Maeda N, Noda M (1998) Involvement of receptor-like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 142:203–216

    PubMed  CAS  Google Scholar 

  84. Manaia A, Lemarchandel V, Klaine M, Max-Audit I, Romeo P, Dieterlen-Lievre F, Godin I (2000) Lmo2 and GATA-3 associated expression in intraembryonic hemogenic sites. Development 127:643–653

    PubMed  CAS  Google Scholar 

  85. Martin-Rendon E, Watt SM(2003) Exploitation of stem cell plasticity. Transfus Med 13:325–349

    PubMed  CAS  Google Scholar 

  86. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    PubMed  CAS  Google Scholar 

  87. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning Blood into Brain: Cells Bearing Neuronal Antigens Generated in Vivo from Bone Marrow. Science 290:1779–1782

    PubMed  CAS  Google Scholar 

  88. Micklem HS, Ford CE, Evans EP, Ogden DA, Papworth DS (1972) Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J Cell Physiol 79:293–298

    PubMed  CAS  Google Scholar 

  89. Milkiewicz M, Hudlicka O, Brown MD, Silgram H (2005) Nitric oxide, VEGF, and VEGFR-2: interactions in activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 289:H336–343

    PubMed  CAS  Google Scholar 

  90. Moore KA (2004) Recent advances in defining the hematopoietic stem cell niche. Curr Opin Hematol 11:107–111

    PubMed  CAS  Google Scholar 

  91. Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stemcells. Annu Rev Cell Dev Biol 11:35–71

    PubMed  CAS  Google Scholar 

  92. Muller A, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301

    PubMed  CAS  Google Scholar 

  93. Murdoch C (2000) CXCR4: chemokine receptor extraordinaire. Immunol Rev 177:175–184

    PubMed  CAS  Google Scholar 

  94. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    PubMed  CAS  Google Scholar 

  95. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    PubMed  CAS  Google Scholar 

  96. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    PubMed  CAS  Google Scholar 

  97. Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA (1998) Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92:908–919

    PubMed  CAS  Google Scholar 

  98. Oostendorp RA, Dormer P (1997) VLA-4-mediated interactions between normal human hematopoietic progenitors and stromal cells. Leuk Lymphoma 24:423–435

    PubMed  CAS  Google Scholar 

  99. Oostendorp RA, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE, Medvinsky AL, Dzierzak EA (2002) Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 99:1183–1189

    PubMed  CAS  Google Scholar 

  100. Oostendorp RA, Robin C, Steinhoff C, Marz S, Brauer R, Nuber UA, Dzierzak EA, Peschel C (2005) Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells 23:842–851

    PubMed  CAS  Google Scholar 

  101. Oostendorp RA, Spitzer E, Reisbach G, Dormer P (1997) Antibodies to the beta 1-integrin chain, CD44, or ICAM-3 stimulate adhesion of blast colony-forming cells and may inhibit their growth. Exp Hematol 25:345–349

    PubMed  CAS  Google Scholar 

  102. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Longterm lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245

    PubMed  CAS  Google Scholar 

  103. Ostendorf T, Van Roeyen C, Westenfeld R, Gawlik A, Kitahara M, De Heer E, Kerjaschki D, Floege J, Ketteler M (2004) Inducible nitric oxide synthase-derived nitric oxide promotes glomerular angiogenesis via upregulation of vascular endothelial growth factor receptors. J Am Soc Nephrol 15:2307–2319

    PubMed  CAS  Google Scholar 

  104. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  105. Pelus LM, Bian H, Fukuda S, Wong D, Merzouk A, Salari H (2005) The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 33:295–307

    PubMed  CAS  Google Scholar 

  106. Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I, Lemischka IR (1999) The molecular characterization of the fetal stem cell marker AA4. Immunity 10:691–700

    PubMed  CAS  Google Scholar 

  107. Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Overton GC, Lemischka IR (2000) The genetic program of hematopoietic stem cells. Science 288:1635–1640

    PubMed  CAS  Google Scholar 

  108. Ploug M, Ellis V (1994) Structure-function relationships in the receptor for urokinase-type plasminogen activator. Comparison to other members of the Ly-6 family and snake venom alpha-neurotoxins. FEBS Lett 349: 163–168

    PubMed  CAS  Google Scholar 

  109. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    PubMed  CAS  Google Scholar 

  110. Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–450

    PubMed  CAS  Google Scholar 

  111. Rosendaal M, Hodgson GS, Bradley TR (1979) Organization of haemopoietic stem cells: the generation-age hypothesis. Cell Tissue Kinet 12:17–29

    PubMed  CAS  Google Scholar 

  112. Rothe L, Collin-Osdoby P, Chen Y, Sunyer T, Chaudhary L, Tsay A, Goldring S, Avioli L, Osdoby P (1998) Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine interleukin-8. Endocrinology 139: 4353–4363

    PubMed  CAS  Google Scholar 

  113. Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745

    PubMed  CAS  Google Scholar 

  114. Sahara M, Sata M, Matsuzaki Y, Tanaka K, Morita T, Hirata Y, Okano H, Nagai R (2005) Comparison of various bone marrow fractions in the ability to participate in vascular remodeling after mechanical injury. Stem Cells 23:874–878

    PubMed  Google Scholar 

  115. Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135

    PubMed  CAS  Google Scholar 

  116. Sato A, Iwama A, Takakura N, Nishio H, Yancopoulos GD, Suda T (1998) Characterization of TEK receptor tyrosine kinase and its ligands, Angiopoietins, in human hematopoietic progenitor cells. Int Immunol 10:1217–1227

    PubMed  CAS  Google Scholar 

  117. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106:571–578

    PubMed  CAS  Google Scholar 

  118. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  119. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44:4908–4913

    PubMed  Google Scholar 

  120. Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 117:5393–5404

    PubMed  CAS  Google Scholar 

  121. Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC (2003) CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 40:368–377

    PubMed  CAS  Google Scholar 

  122. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  123. Sonveaux P, Martinive P, DeWever J, Batova Z, Daneau G, Pelat M, Ghisdal P, Gregoire V, Dessy C, Balligand JL, Feron O (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95:154–161

    PubMed  CAS  Google Scholar 

  124. Spangrude GJ, Aihara Y, Weissman IL, Klein J (1988) The stem cell antigens Sca-1 and Sca-2 subdivide thymic and peripheral T lymphocytes into unique subsets. J Immunol 141:3697–3707

    PubMed  CAS  Google Scholar 

  125. Stanford WL, Haque S, Alexander R, Liu X, Latour AM, Snodgrass HR, Koller BH, Flood PM (1997) Altered proliferative response by T lymphocytes of Ly-6A (Sca-1) null mice. J Exp Med 186:705–717

    PubMed  CAS  Google Scholar 

  126. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87:8736–8740

    PubMed  CAS  Google Scholar 

  127. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594

    PubMed  CAS  Google Scholar 

  128. Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209.

    PubMed  CAS  Google Scholar 

  129. Take M, Tsutsui J, Obama H, Ozawa M, Nakayama T, Maruyama I, Arima T, Muramatsu T (1994) Identification of nucleolin as a binding protein for midkine (MK) and heparin-binding growth associated molecule (HB-GAM). J Biochem (Tokyo) 116:1063–1068

    CAS  Google Scholar 

  130. Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105:1068–1077

    PubMed  CAS  Google Scholar 

  131. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    PubMed  Google Scholar 

  132. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    PubMed  CAS  Google Scholar 

  133. Valgimigli M, Rigolin GM, Fucili A, Porta MD, Soukhomovskaia O, Malagutti P, Bugli AM, Bragotti LZ, Francolini G, Mauro E, Castoldi G, Ferrari R (2004) CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 110: 1209–1212

    PubMed  CAS  Google Scholar 

  134. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–7

    PubMed  CAS  Google Scholar 

  135. Vassilopoulos G, Wang PR, Russell DW(2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904

    PubMed  CAS  Google Scholar 

  136. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    PubMed  CAS  Google Scholar 

  137. Waskow C, Paul S, Haller C, Gassmann M, Rodewald HR (2002) Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 17:277–288

    PubMed  CAS  Google Scholar 

  138. Waskow C, Rodewald HR (2002) Lymphocyte development in neonatal and adult c-Kit-deficient (c-KitW/W) mice. Adv Exp Med Biol 512:1–10

    PubMed  CAS  Google Scholar 

  139. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    PubMed  CAS  Google Scholar 

  140. Wilkinson-Berka JL (2004) Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr Pharm Des 10:3331–3348

    PubMed  CAS  Google Scholar 

  141. Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34:461–475

    PubMed  CAS  Google Scholar 

  142. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936

    PubMed  CAS  Google Scholar 

  143. Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE, Jr., Bischoff J (2004) Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 287: H480–487

    PubMed  CAS  Google Scholar 

  144. Xu MJ, Tsuji K, Ueda T, Mukouyama YS, Hara T, Yang FC, Ebihara Y, Matsuoka S, Manabe A, Kikuchi A, Ito M, Miyajima A, Nakahata T (1998) Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-mesonephros-derived stromal cell lines. Blood 92:2032–2040

    PubMed  CAS  Google Scholar 

  145. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328

    PubMed  CAS  Google Scholar 

  146. Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    PubMed  CAS  Google Scholar 

  147. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    PubMed  CAS  Google Scholar 

  148. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sengupta, N., Grant, M.B., Caballero, S., Boulton, M.E. (2007). Hematopoietic Stem Cells in Vascular Development and Ocular Neovascularization. In: Joussen, A.M., Gardner, T.W., Kirchhof, B., Ryan, S.J. (eds) Retinal Vascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29542-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29542-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29541-9

  • Online ISBN: 978-3-540-29542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics