Skip to main content

Micro-particle Collective and Non-collective Pair Interactions

  • Chapter
Elementary Physics of Complex Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 731))

  • 1142 Accesses

Abstract

Although a general description of the pair grain interaction can be directly obtained from fluctuations of grain distributions and grain pair correlation function, we prefer here to give a simple description of the collective interaction using the model of a “test” grain in a “sea” of all other grains. In the limit of linear fluctuations this can lead to a direct description of the grain interaction in the presence of many grains (with collective effects included) for β ≪ 1. But using this approach we will also be able to demonstrate how the non-linearity changes the collective interaction for β ≫ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gross (2001). Micro-canonical Thermodynamics, Phase Transitions in“Small” Systems, World Scientific Lecture Notes in Physics 66.

    Google Scholar 

  2. V. Tsytovich (1995). Lectures on Nonlinear Plasma Kinetics Springer Verlag, Berlin.

    Google Scholar 

  3. H. Thomas, D. Morfill, V. Demmel, and J. Goree (1994). Phys.Rev.Lett. 73, 652.

    Article  ADS  Google Scholar 

  4. J.U. Chu and I. Lin (1994). Physica A 205, 183.

    Article  Google Scholar 

  5. A. Melzer, T. Trottenberg, and A. Piel (1994). Phys.Lett. A 191, 301.

    Article  Google Scholar 

  6. Y. Hayashi, K. Tachibana (1994). Jpn. Appl. Phys. 33, L804.

    Article  ADS  Google Scholar 

  7. V. Fortov, A. Nefedov, O. Petrov, A. Samarin and A. Chernychev (1996). Phys. Let.A 219, 89.

    Article  ADS  Google Scholar 

  8. V. Tsytovich (1994). Comm PL Phys. Contr. Fus. 15, 349.

    Google Scholar 

  9. L. Landau and E. Lifshitz (1955). Electrodynamics of Continuous Media Pegramon press, London N.Y.

    Google Scholar 

  10. S. Hamaguichi (1997). Comm Pl. Phys.Contr.Fus. 18, 95.

    Google Scholar 

  11. Ya. Khodataev, R. Bingham, V. Tarakanov, and V. Tsytovich (1996). Fiz. Plazmy (Russia), 22, 1028.

    Google Scholar 

  12. A. Ignatov (1995). Comments P.N.lebedev Inst.A 58, 1.

    Google Scholar 

  13. Ya. Khodataev, G. Morfill, and V. Tsytovich (2001). J. Plasma Phys. 65, 257.

    Article  ADS  Google Scholar 

  14. M. Lampe, V. Gavrishchaka, G. Ganguli, and G. Joyce (2001). Phys. Rev. Lett. 86, 5278.

    Article  ADS  Google Scholar 

  15. M. Lampe, G. Joyce, and G. Ganguli (2001). Phys. Scr. T89, 106.

    Article  ADS  Google Scholar 

  16. V. Tsytovich, Ya. Khodataev, and R. Bingham (1996). Comments on Plasma Phys. Contr. Fusion 17, 249.

    Google Scholar 

  17. Sh. Amiranashvili Sh., N. Duseinzade and V. Tsytovich V.(1999), Phys,Rev.A, 8, 3110.

    Google Scholar 

  18. Ya. Khodataev, G. Morfill, and VVV. Tsytovich (2001). J. Plasma Phys. 65, 257.

    Article  ADS  Google Scholar 

  19. V. Tsytovich, Ya. Khodataev, G. Morfill, R. Bingham, and J. Winter (1998). Comments in Plasma Physics and Controlled Fusion 18, 281.

    Google Scholar 

  20. R. Bingham and V. Tsytovich (2001). IEEE Trans. Plasma Sci. 29, 158.

    Article  ADS  Google Scholar 

  21. S.V. Vladimirov, K. Ostrikov, and A.A. Samarian (2005). Physics and Applications of Complex Plasmas, Imperial College, London.

    Book  MATH  Google Scholar 

  22. S.V. Vladimirov and K. Ostrikov (2004). Phys. Rep. 393, 175.

    Article  ADS  Google Scholar 

  23. L. Spitzer (1978). Physical Processes in the Interstellar Medium, John Wiley and Sons, New York.

    Google Scholar 

  24. S. Weidenschilling and J. Cuzzi (1993). Protostars and Planets III, edited by E. Levy and J. Lunine, Univ. Arizona Press, Tucson, p. 1031.

    Google Scholar 

  25. S. Kempf, S. Pfalzner, and T. Henning (1999). Icarces 141, 388.

    Article  ADS  Google Scholar 

  26. P. Meaking (1991). Rev. Geophys. Res. 29, 317.

    Article  ADS  Google Scholar 

  27. J. Blum, G. Wurm, S. Kempf et al.(2000). Phys. Rev. Lett. 85, 2426.

    Article  ADS  Google Scholar 

  28. L. Boufendi and A. Boushoule (1994). Plasma Sources Sci. Technol. 3, 262.

    Article  ADS  Google Scholar 

  29. A. Bouchoule (1999). Technological Impacts of Dusty Plasmasin: Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing.John Wiley and Sons.

    Google Scholar 

  30. J. Blum and G. Wurm.(2000). 143, 138.

    Google Scholar 

  31. A. Gasgarden et al.(1994). Plasma Sources Sci. Technol. 3, 329.

    Google Scholar 

  32. A. Boushoule et al.(1991). J.Appl.Phys. 70, 1991.

    Article  ADS  Google Scholar 

  33. V. Tsytovich and J. Winter (1998). Phys. Uspekchi 41, 815.

    Article  ADS  Google Scholar 

  34. J. Winter (1996). Plasma Phys. Control Fusion 38, 1503.

    Article  ADS  Google Scholar 

  35. J. Winter, A. Nefedov, and V. Fortov (2001). J. Nucl. Materials 290–293, 509.

    Article  Google Scholar 

  36. A. Kukushkin and A. Rantzev-Kartinov (1999). Long Lived Filaments in Fusion Plasmas: Review of Observations and status of Hypothesys of micro-product assembled skeletons (Preprint INNN RFS “Kurchatov Institute”).

    Google Scholar 

  37. S.V. Vladimirov, S.A. Maiorov, and N.F. Cramer (2003). Phys. Rev. E 67, 016407.

    Article  ADS  Google Scholar 

  38. S.V. Vladimirov, S.A. Maiorov, and O. Ishihara (2003). Phys. Plasmas 10, 3867.

    Article  ADS  Google Scholar 

  39. A.A. Samarian, S.V. Vladimirov, and B.W. James (2005). JETP Lett. 82, 858.

    Article  Google Scholar 

  40. V. Tsytovich and G. Morfill (2002). Fiz. Plazmy (Russia), 28 195;

    Google Scholar 

  41. V. Tsytovich and G. Morfill (2002). Plasma Physics Reports 28, 171.

    Article  ADS  Google Scholar 

  42. V. Tsytovich. (2003). JEPT Lett. 78, 763.

    ADS  Google Scholar 

  43. R. Kompaneetz, V. Tsytovich, and G. Morfill (2004). EEE Trans Sc special issue “Dusty Plasma”, “Weak Dust ion -acoustic and Dust-acoustic solitons with absorption of ions, ionisation and ion drag” (April 2004).

    Google Scholar 

  44. U. Konopka, D. Samsonov, A. Ivlev, J. Goree, V. Steinberg, V., and G. Morfill, G. (2000). Phys. Rev. E 61, 1890.

    Article  ADS  Google Scholar 

  45. O. Ishihara and N. Sato (2001) IEEE Trans. Plasma Sci. 29, 179.

    Article  ADS  Google Scholar 

  46. V. Tsytovich (2004). Contr. to Plasma Phys. 44, 26.

    Google Scholar 

  47. V. Tsytovich (2005). JETP Lett. 81, 448.

    Article  ADS  Google Scholar 

  48. V. Tsytovich (2005). Contr. to Plasma Phys. 45, 230.

    Google Scholar 

  49. C. Castaldo, U. de Angelis, and V. Tsytovich (2006). Phys. Rev.Lett. 96, 075004.

    Article  ADS  Google Scholar 

  50. V. Tsytovich, R. Kompaneets, U. de Angelis and C. Castaldo (2005). Contr. to Plasma Phys. 45, 288.

    Google Scholar 

  51. V. Tsytovich and R. Companeets (2005). Contr. to Plasma Phys. 45, 265.

    Google Scholar 

  52. Y. Al’pert, A. Gurevich, and L. Pitaevsky (1965). Space Physics with Artificial Sattelites, p. 186 (Consultant Bureaut), London, NY.

    Google Scholar 

  53. J. Laframboise and L. Parker (1973). Phys. Fluids 16, 629–36.

    Article  ADS  Google Scholar 

  54. V. Tsytovich and G. Morfill (2004). Plasma Physics and Contrelled Fusion, 45, Number 13A, Special issue: Invited papers from the 31th European Physical Society Conference on Controlled Fusion and Plasma Physics, London, 28 June 2 Jely 2004, Institite of Physics Publishing.

    Google Scholar 

  55. U. Konopka, L. Ratke, and H. Thomas (1997). Phys. Rev. Lett. 79, 1269.

    Article  ADS  Google Scholar 

  56. U. Konopka, G. Morfill, H. Thomas, and L. Ratke (1998). AIP Conf. Proc. 446, 53.

    Article  ADS  Google Scholar 

  57. U. Konopka, G. Morfill, and L. Ratke (2000). Phys. Rev. Lett. 84, 891.

    Article  ADS  Google Scholar 

  58. A. Ivlev, U. Konopka, G. Morfill (2000). Phys. Rev. E 62, 2739.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsytovich, V.N., Morfill, G.E., Vladimirov, S.V., Thomas, H.M. (2008). Micro-particle Collective and Non-collective Pair Interactions. In: Elementary Physics of Complex Plasmas. Lecture Notes in Physics, vol 731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29003-2_5

Download citation

Publish with us

Policies and ethics