Skip to main content

Why Complex Plasmas Have Many Applications in Future Technology?

  • Chapter
Elementary Physics of Complex Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 731))

  • 1153 Accesses

Abstract

The material given in the previous chapter shows that recently discovered complex plasmas present a new kind of matter not previously encountered and that investigation of this new field of physics is only in its first stage. Many new discoveries can be expected in the very near future. The field is very rapidly developing and is of major importance to fundamental science. Usually, most new discoveries in fundamental science have many future applications. It is very difficult to predict such discoveries, and new discoveries usually require some time to be incorporated into everyday life. But the situation with complex plasmas is different because the recent boom in the field not only stems from scientific discoveries but was simultaneously dictated by several problems of industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gasgarden A. et al. (1994). Plasma Sources Sci. Technol. 3, 329.

    Google Scholar 

  2. A. Boushoule et al. (1991). J.Appl.Phys. 70, 1991.

    Article  ADS  Google Scholar 

  3. L. Boufendi and A. Boushoule A. (1994). Plasma Sources Sei. Technol. 3, 262.

    Article  ADS  Google Scholar 

  4. A. Bouchoule, (1999). Technological Impacts of Dusty Plasmas in: Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing. John Wiley and Sons.

    Google Scholar 

  5. G. Selwyn, J. Heidenrich, and K. Haller (1990). Appl.Phys. Lett. 57, 1867.

    Article  ADS  Google Scholar 

  6. G. Selwyn, J. McKillop, K. Haller, and J. Wu (1990). J. Vac.Sci. Technol. 18, 1726.

    ADS  Google Scholar 

  7. G. Selwyn, Optical Characterization of Particle Traps. Proceedings of NATO Advanced Research Workshop on Formation, Transport and Consequences of Particles in Plasmas, Chateau de Bonas, Castera-Verduzan, France (1994).

    Google Scholar 

  8. G. Selwyn, Plasma Sources, Science and Technology 3, 340.

    Google Scholar 

  9. S.V. Vladimirov, K. Ostrikov, and A.A. Samarian (2005). Physics and Applications of Complex Plasmas, Imperial College, London.

    Book  MATH  Google Scholar 

  10. S.V. Vladimirov and K. Ostrikov (2004). Phys. Rep. 393, 175.

    Article  ADS  Google Scholar 

  11. D. Samsonov, J. Goree (1999) J. Vac Technol.A 17, 2836.

    Article  ADS  Google Scholar 

  12. K. Horiuchi, S. Iizuka, S., and N. Sato (2000). Surf. Coat. Technol. (Switzerland), 131, 243.

    Article  Google Scholar 

  13. E. Stoffels, W. Stoffels, H. Kersten, G. Swinkels, and G. Kroesen (2001). Phys. Scr. T89, 168.

    Article  ADS  Google Scholar 

  14. H. Kersten, E. Stoffels, W. Stoffels, M. Otte, C. Csambal, C. Deutsch, and H. Hippler (2000). J. Appl. Phys. 87, 3637.

    Article  ADS  Google Scholar 

  15. S. Veprek, S. Reiprich, and L. Shizi, L. (1995). Appl.Phys.Lett. 66, 2640.

    Article  ADS  Google Scholar 

  16. T. Oku, T. Hirata, N. Motegi, R. Hatakeyama, N. Sato, T. Mieno, N.Y. Sato, H. Mase, M. Niwano, and N. Miyamoto (2000). J. Mater. Res. 15, 2182.

    Article  ADS  Google Scholar 

  17. Report on 3d European Conference on Dusty Plasmas, 1999.

    Google Scholar 

  18. N. Sato (2002). J.Phys. Society Japan.

    Google Scholar 

  19. B. Annaratone, A. Khrapak, A. Ivlev et al. (2001) Phys.Rev.E 63, 036406.

    Article  ADS  Google Scholar 

  20. U. Konopka, D. Samsonov, A. Ivlev, J. Goree, V. Steinberg, V., and G. Morfill, G. (2000). Phys. Rev. E 61, 1890.

    Article  ADS  Google Scholar 

  21. N. Sato, G. Uchida, Y. Kaneko, S. Dhimizu, and S. Iizuka (2001). Phys. Plasmas 8, 1786.

    Article  ADS  Google Scholar 

  22. V. Tsytovich and S. Vladimirov (2004). IEEE Trans. Plasma Sci. 32, 659.

    Article  ADS  Google Scholar 

  23. V. Tsytovich, S. Sato, and G. Morfill (2003). New Journal of Physics 4, 43.

    Article  ADS  Google Scholar 

  24. J. Winter (1996). Plasma Phys. Control Fusion 38, 1503.

    Article  ADS  Google Scholar 

  25. J. Winter (1998) Plasma Phys. Control Fusion 40, 201.

    Article  Google Scholar 

  26. J. Winter, A. Nefedov, and V. Fortov (2001). J. Nucl. Materials 290–293, 509.

    Article  Google Scholar 

  27. V. Tsytovich and J. Winter (1998). Phys. Uspekchi 41, 815.

    Article  ADS  Google Scholar 

  28. A. Kukushkin and A. Rantzev-Kartinov. Long Lived Filaments in Fusion Plasmas: Review of Observations and status of Hypothesys of micro-product assembled skeletons (Preprint INNN RFS “Kurchatov Institute”).

    Google Scholar 

  29. T. Ditmire, T. Donnelly, R. Falcone, and M. Peny, M. (1995). Phys. Rev. Lett. 17, 3122.

    Article  ADS  Google Scholar 

  30. T. Ditmire, T. Donnelly, A. Rubenchik, R. Falcone, and M. Perry (1996). Phys. Rev. A 53, 3379.

    Article  ADS  Google Scholar 

  31. T. Ditmire, J. Zweiback, V. Yanovsky, T. Cowan, G. Hays and K. Wharton (1999). Nature 398, 489–92.

    Article  ADS  Google Scholar 

  32. P. Shewee, B. Steain (2002). Physics News Update A IP Numver 682, April 13 (2004), J. Mat Sci.

    Google Scholar 

  33. M. Horanyi, H. Houpis, and D. Mendis (1988). Astrophys. Space Sci. 144, 212.

    ADS  Google Scholar 

  34. W. Ecklund and B. Basley (1981) J.Gephys.Res. 86, 7775.

    Article  ADS  Google Scholar 

  35. S. Kaplan and S. Pikel’ner (1974), Ann. Rev. Astronomy and Astrophys. 12, 113.

    Article  ADS  Google Scholar 

  36. G. Morfill and M. Scholer eds. (1992). Physical Processes in Interstellar Clouds. Reidel Publ. Comp.

    Google Scholar 

  37. R. Chevalier (1992). Nature 355, 691.

    Article  ADS  Google Scholar 

  38. O. Havnes, T. Aslaksen, and A. Brattu (2001). Physica Scripta T89, 133.

    Article  ADS  Google Scholar 

  39. V. Tsytovich, O. Havnes Proceedings ICPDP-2002, Contributed papers (2002).

    Google Scholar 

  40. Ion -aerosol-cloud interactions, 007,Proceedings CERN workshop. Ed. J. Kirkby (2001).

    Google Scholar 

  41. T. Backnouse (1985). Meterol. Mag. 20, 133.

    Google Scholar 

  42. M. Christie (2001). The Ozone Layer A Philosophy of Science Perspective, Cambridge University Press, N.Y., London.

    Book  Google Scholar 

  43. O. Havnes (1989). Abstracts of Proceedings of the First Workshop on Duty Plasmas, Capri 1989, Napoly University, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsytovich, V.N., Morfill, G.E., Vladimirov, S.V., Thomas, H.M. (2008). Why Complex Plasmas Have Many Applications in Future Technology?. In: Elementary Physics of Complex Plasmas. Lecture Notes in Physics, vol 731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29003-2_2

Download citation

Publish with us

Policies and ethics