Skip to main content

Disorders of Sphingolipid Metabolism

  • Chapter
Inborn Metabolic Diseases

Abstract

Sphingolipidoses are a subgroup of lysosomal storage disorders in which sphingolipids accumulate in one or several organs as the result of a primary deficiency in enzymes or activator proteins involved in their degradative pathway. Traditionally, this subgroup also includes Niemann-Pick disease type C, characterized by impaired cellular trafficking of several lipids. With the exception of Fabry disease, which is X-linked recessive, sphingolipidoses have an autosomal recessive inheritance. The clinical presentation and course of the classical forms of the various diseases are often characteristic. With the help of relevant procedures (imaging, neurophysiology, ophthalmologic examination?, careful examination of the patient and perusal of the disease history (especially age and type of first symptom) should lead to a provisional diagnosis and oriented biochemical tests. Late-onset forms are often more difficult to recognize, and foetal presentations have also been overlooked in the past. No overall screening procedure is yet available to date. In most sphingolipidoses, the diagnosis is made by demonstration of the enzymatic defect, generally expressed in most cells, organs or even serum (leukocytes represent the most widely used enzyme source). In specific diseases, more complex biochemical tests or/and a molecular genetics assessment may be necessary. The past 15 years have seen the era of specific therapies for non-neuronopathic Gaucher disease and Fabry disease. But in spite of active research on animal models, knowledge on pathophysiology and progress toward therapy of the neurological forms in human patients remain to date limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charrow J, Andersson HC, Kaplan P et al (2000) The Gaucher registry: demographics and disease characteristics of 1698 patients with Gaucher disease. Arch Intern Med 160:2835–2843

    Article  PubMed  CAS  Google Scholar 

  2. Grabowski GA, Andria G, Baldellou A et al (2004) Pediatric non-neuronopathic Gaucher disease: presentation, diagnosis and assessment. Consensus statements. Eur J Pediatr 163:58–66

    Article  PubMed  Google Scholar 

  3. Wenstrup RJ, Roca-Espiau M, Weinreb NJ, Bembi B (2002) Skeletal aspects of Gaucher disease: a review. Br J Radiol. 75[Suppl 1]: A2–12

    PubMed  Google Scholar 

  4. Varkonyi J, Rosenbaum H, Baumann N et al (2003) Gaucher disease associated with parkinsonism: four further case reports. Am J Med Genet A 116:348–351

    Article  PubMed  Google Scholar 

  5. Vellodi A, Bembi B, de Villemeur TB et al (2001) Management of neuronopathic Gaucher disease: a European consensus. J Inherit Metab Dis 24:319–327

    Article  PubMed  CAS  Google Scholar 

  6. Stone DL, Sidransky (1999) Hydrops fetalis: lysosomal storage disorders in extremis. Adv Pediatr 46:409–440

    PubMed  CAS  Google Scholar 

  7. Mignot C, Gelot A, Bessieres B et al (2003) Perinatal-lethal Gaucher disease. Am J Med Genet A 120:338–344

    Article  PubMed  CAS  Google Scholar 

  8. Dreborg S, Erikson A, Hagberg B (1980) Gaucher disease — Norrbottnian type. I. General clinical description. Eur J Pediatr 133:107–118

    Article  PubMed  CAS  Google Scholar 

  9. Pampols T, Pineda M, Giros ML et al (1999) Neuronopathic juvenile glucosylceramidosis due to sap-C deficiency: clinical course, neuropathology and brain lipid composition in this Gaucher disease variant. Acta Neuropathol (Berl) 97:91–97

    Article  PubMed  CAS  Google Scholar 

  10. Vellodi A (2005) Lysosomal storage disorders. Br J Haematol 128:413–431

    Article  PubMed  CAS  Google Scholar 

  11. Sidransky E (2004) Gaucher disease: complexity in a «simple» disorder. Mol Genet Metab 83:6–15

    Article  PubMed  CAS  Google Scholar 

  12. Amato D, Stachiw T, Clarke JT, Rivard GE (2004) Gaucher disease: variability in phenotype among siblings. J Inherit Metab Dis 27:659–669

    Article  PubMed  CAS  Google Scholar 

  13. Lachmann RH, Grant IR, Halsall D, Cox TM (2004) Twin pairs showing discordance of phenotype in adult Gaucher’s disease. QJM 97:199–204

    Article  PubMed  CAS  Google Scholar 

  14. Elstein Y, Eisenberg V, Granovsky-Grisaru S et al (2004) Pregnancies in Gaucher disease: a 5-year study. Am J Obstet Gynecol 190:435–441

    Article  PubMed  Google Scholar 

  15. Weinreb NJ, Charrow J, Andersson HC et al (2002) Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med 113:112–119

    Article  PubMed  CAS  Google Scholar 

  16. Weinreb NJ, Aggio MC, Andersson HC et al (2004) Gaucher disease type 1: revised recommendations on evaluations and monitoring for adult patients. Semin Hematol 41:15–22

    Article  PubMed  Google Scholar 

  17. Baldellou A, Andria G, Campbell PE et al (2004) Paediatric non-neuronopathic Gaucher disease: recommendations for treatment and monitoring. Eur J Pediatr 163:67–75

    Article  PubMed  Google Scholar 

  18. Elstein D, Hollak C, Aerts JM et al (2004) Sustained therapeutic effects of oral miglustat (Zavesca, N-butyldeoxynojirimycin, OGT 918) in type I Gaucher disease. J Inherit Metab Dis 27:757–766

    Article  PubMed  CAS  Google Scholar 

  19. Lyon G, Adams RD, Kolodny EH (1996) Neurology of hereditary metabolic diseases of children. McGraw Hill, New York

    Google Scholar 

  20. Harzer K, Rolfs A, Bauer P et al (2003) Niemann-Pick disease type A and B are clinically but also enzymatically heterogeneous: pitfall in the laboratory diagnosis of sphingomyelinase deficiency associated with the mutation Q292 K. Neuropediatrics 34:301–306

    Article  PubMed  CAS  Google Scholar 

  21. Pavlù-Pereira H, Asfaw B, Poupetová H et al (2005) Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of 25 Czech and Slovak patients. A multi-approach study. J Inherit Metab Dis 28:203–227

    Article  PubMed  CAS  Google Scholar 

  22. Mendelson DS, Wasserstein MP, Desnick RJ et al (2006) Chest radiograph, high-resolution CT, and pulmonary function findings in Niemann-Pick disease type B. Radiology 238:339–345

    PubMed  Google Scholar 

  23. Wasserstein MP, Larkin AE, Glass RB et al (2003) Growth restriction in children with type B Niemann-Pick disease. J Pediatr 142:424–428

    Article  PubMed  Google Scholar 

  24. McGovern MM, Wasserstein MP, Aron A et al (2004) Ocular manifestations of Niemann-Pick disease type B. Ophthalmology 111:1424–1427

    Article  PubMed  Google Scholar 

  25. Wasserstein MP, Desnick RJ, Schuchman EH et al (2004) The natural history of type B Niemann-Pick disease: results from a 10-year longitudinal study. Pediatrics 114:e672–e677

    Article  PubMed  Google Scholar 

  26. Simonaro CM, Desnick RJ, McGovern MM et al (2002) The demographics and distribution of type B Niemann-Pick disease: novel mutations lead to new genotype/phenotype correlations. Am J Hum Genet 71:1413–1419

    Article  PubMed  CAS  Google Scholar 

  27. Simonaro CM, Park J-H, Eliyahu E et al (2006) Imprinting at the SMPD1 locus: Implications for acid sphingomyelinase-deficient Niemann-Pick Disease. Am J Hum Genet 78:865–870

    Article  PubMed  CAS  Google Scholar 

  28. Miranda SR, He X, Simonaro CM et al (2000) Infusion of recombinant human acid sphingomyelinase into Niemann-Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 14:1988–1995

    Article  PubMed  CAS  Google Scholar 

  29. Shihabuddin LS, Numan S, Huff MR et al (2004) Intracerebral transplantation of adult mouse neural progenitor cells into the Niemann-Pick-A mouse leads to a marked decrease in lysosomal storage pathology. J Neurosci 24:10642–10651

    Article  PubMed  CAS  Google Scholar 

  30. Muthane U, Chickabasaviah Y, Kaneski C et al (2004) Clinical features of adult GM1 gangliosidosis: report of three Indian patients and review of 40 cases. Mov Disord 19:1334–1341

    Article  PubMed  Google Scholar 

  31. Pshezhetsky AV, Ashmarina M (2001) Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog Nucleic Acid Res Mol Biol 69:81–114

    PubMed  CAS  Google Scholar 

  32. Pinto R, Caseiro C, Lemos M et al (2004) Prevalence of lysosomal storage diseases in Portugal. Eur J Hum Genet 12:87–92

    Article  PubMed  Google Scholar 

  33. Bolhuis PA, Oonk JG, Kamp PE et al (1987) Ganglioside storage, hexosaminidase lability, and urinary oligosaccharides in adult Sandhoff’s disease. Neurology 37:75–81

    PubMed  CAS  Google Scholar 

  34. Myerowitz R, Lawson D, Mizukami H et al (2002) Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet 11:1343–1350

    Article  PubMed  CAS  Google Scholar 

  35. Jeyakumar M, Butters TD, Cortina-Borja M et al (1999) Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci USA 96:6388–6393

    Article  PubMed  CAS  Google Scholar 

  36. Hagberg B, Kollberg H, Sourander P, Akesson HO (1969) Infantile globoid cell leucodystrophy (Krabbe’s disease). A clinical and genetic study of 32 Swedish cases 1953–1967. Neuropädiatrie 1:74–88

    Article  PubMed  CAS  Google Scholar 

  37. Lyon G, Hagberg B, Evrard P et al (1991) Symptomatology of late onset Krabbe’s leukodystrophy: the European experience. Dev Neurosci 13:240–244

    PubMed  CAS  Google Scholar 

  38. Kolodny EH, Raghavan S, Krivit W (1991) Late-onset Krabbe disease (globoid cell leukodystrophy): clinical and biochemical features of 15 cases. Dev Neurosci 13:232–239

    PubMed  CAS  Google Scholar 

  39. Henderson RD, MacMillan JC, Bradfield JM (2003) Adult onset Krabbe disease may mimic motor neurone disease. J Clin Neurosci 10:638–639

    Article  PubMed  CAS  Google Scholar 

  40. Spiegel R, Bach G, Sury V et al (2005) A mutation in the saposin A coding region of the prosaposin gene in an infant presenting as Krabbe disease: first report of saposin A deficiency in humans. Mol Genet Metab 84:160–166

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki K (1998) Twenty five years of the »psychosine hypothesis«: a personal perspective of its history and present status. Neurochem Res 23:251–259

    Article  PubMed  CAS  Google Scholar 

  42. Wenger DA, Rafi MA, Luzi P (1997) Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat 10:268–279

    Article  PubMed  CAS  Google Scholar 

  43. Husain AM, Altuwaijri M, Aldosari M (2004) Krabbe disease: neurophysiologic studies and MRI correlations. Neurology 63:617–620

    PubMed  Google Scholar 

  44. Barone R, Bruhl K, Stoeter P et al (1996) Clinical and neuroradiological findings in classic infantile and late-onset globoid-cell leukodystrophy (Krabbe disease). Am J Med Genet 63:209–217

    Article  PubMed  CAS  Google Scholar 

  45. Loes DJ, Peters C, Krivit W (1999) Globoid cell leukodystrophy: distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. AJNR Am J Neuroradiol 20:316–323

    PubMed  CAS  Google Scholar 

  46. Aldosari M, Altuwaijri M, Husain AM (2004) Brain-stem auditory and visual evoked potentials in children with Krabbe disease. Clin Neurophysiol 115:1653–1656

    Article  PubMed  Google Scholar 

  47. Krivit W, Shapiro EG, Peters C et al (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 338:1119–1126

    Article  PubMed  CAS  Google Scholar 

  48. Peters C, Steward CG (2003) Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant 31:229–239

    Article  PubMed  CAS  Google Scholar 

  49. Boelens JJ (2006) Trends in haematopietic cell transplantation for inborn errors of metabolism. J Inherit Metab Dis 29:413–420

    Article  PubMed  Google Scholar 

  50. Escolar ML, Poe MD, Provenzale JM et al (2005). Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352:2069–2081

    Article  PubMed  CAS  Google Scholar 

  51. Hagberg B (1963) Clinical symptoms, signs and tests in metachromatic leukodystrophy. In: Folch-Pi J, Bauer H (eds) Brain lipids and lipoproteins and the leukodystrophies. Elsevier, Amsterdam, pp 134–146

    Google Scholar 

  52. Haltia T, Palo J, Haltia M, Icen A (1980) Juvenile metachromatic leukodystrophy. Clinical, biochemical, and neuropathologic studies in nine new cases. Arch Neurol 37:42–46

    PubMed  CAS  Google Scholar 

  53. Baumann N, Turpin JC, Lefevre M, Colsch B (2002) Motor and psychocognitive clinical types in adult metachromatic leukodystrophy: genotype/phenotype relationships? J Physiol Paris 96:301–306

    Article  PubMed  Google Scholar 

  54. Comabella M, Waye JS, Raguer N et al (2001) Late-onset metachromatic leukodystrophy clinically presenting as isolated peripheral neuropathy: compound heterozygosity for the IVS2+1G→A mutation and a newly identified missense mutation (Thr408Ile) in a Spanish family. Ann Neurol 50:108–112

    Article  PubMed  CAS  Google Scholar 

  55. Shapiro EG, Lockman LA, Knopman D, Krivit W (1994) Characteristics of the dementia in late-onset metachromatic leukodystrophy. Neurology 44:662–665

    PubMed  CAS  Google Scholar 

  56. Gieselmann V, Zlotogora J, Harris A et al (1994) Molecular genetics of metachromatic leukodystrophy. Hum Mutat 4:233–242

    Article  PubMed  CAS  Google Scholar 

  57. Berger J, Loschl B, Bernheimer H et al (1997) Occurrence, distribution, and phenotype of arylsulfatase A mutations in patients with metachromatic leukodystrophy. Am J Med Genet 69:335–340

    Article  PubMed  CAS  Google Scholar 

  58. Rafi MA, Coppola S, Liu SL et al (2003) Disease-causing mutations in cis with the common arylsulfatase A pseudodeficiency allele compound the difficulties in accurately identifying patients and carriers of metachromatic leukodystrophy. Mol Genet Metab 79:83–90

    Article  PubMed  CAS  Google Scholar 

  59. Cameron CL, Kang PB, Burns TM et al (2004) Multifocal slowing of nerve conduction in metachromatic leukodystrophy. Muscle Nerve 29:531–536

    Article  PubMed  Google Scholar 

  60. Sener RN (2003) Metachromatic leukodystrophy. Diffusion MR imaging and proton MR spectroscopy. Acta Radiol 44:440–443

    Article  PubMed  CAS  Google Scholar 

  61. Oguz KK, Anlar B, Senbil N, Cila A (2004) Diffusion-weighted imaging findings in juvenile metachromatic leukodystrophy. Neuropediatrics 35:279–282

    Article  PubMed  CAS  Google Scholar 

  62. Kudoh T, Wenger DA (1982) Diagnosis of metachromatic leukodystrophy, Krabbe disease, and Farber disease after uptake of fatty acid-labeled cerebroside sulfate into cultured skin fibroblasts. J Clin Invest 70:89–97

    Article  PubMed  CAS  Google Scholar 

  63. Krivit W, Shapiro E, Kennedy W et al (1990) Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. N Engl J Med 322:28–32

    Article  PubMed  CAS  Google Scholar 

  64. Malm G, Ringden O, Winiarski J et al (1996) Clinical outcome in four children with metachromatic leukodystrophy treated by bone marrow transplantation. Bone Marrow Transplant 17:1003–1008

    PubMed  CAS  Google Scholar 

  65. Kidd D, Nelson J, Jones F et al (1998) Long-term stabilization after bone marrow transplantation in juvenile metachromatic leukodystrophy. Arch Neurol 55:98–99

    Article  PubMed  CAS  Google Scholar 

  66. Biffi A, De Palma M, Quattrini A et al (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129

    Article  PubMed  CAS  Google Scholar 

  67. Matzner U, Herbst E, Hedayati KK et al (2005) Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 14:1139–1152

    Article  PubMed  CAS  Google Scholar 

  68. Whybra C, Kampmann C, Willers I et al (2001) Anderson-Fabry disease: clinical manifestations of disease in female heterozygotes. J Inherit Metab Dis 24:715–724

    Article  PubMed  CAS  Google Scholar 

  69. Guffon N (2003) Clinical presentation in female patients with Fabry disease. J Med Genet 40:e38

    Article  PubMed  CAS  Google Scholar 

  70. Ries M, Gupta S, Moore DF et al (2005) Pediatric Fabry disease. Pediatrics 115: e344–e355

    Article  PubMed  Google Scholar 

  71. Desnick RJ, Brady R, Barranger J et al (2003) Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 138:338–346

    PubMed  Google Scholar 

  72. Mehta A, Ricci R, Widmer U et al (2004) Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 34:236–242

    Article  PubMed  CAS  Google Scholar 

  73. Mills K, Morris P, Lee P et al (2005) Measurement of urinary CDH and CTH by tandem mass spectrometry in patients hemizygous and heterozygous for Fabry disease. J Inherit Metab Dis 28:35–48

    Article  PubMed  CAS  Google Scholar 

  74. Whitfield PD, Calvin J, Hogg S et al (2005) Monitoring enzyme replacement therapy in Fabry disease—role of urine globotriaosylceramide. J Inherit Metab Dis 28:21–33

    Article  PubMed  CAS  Google Scholar 

  75. Beck M, Ricci R, Widmer U, Dehout F et al (2004) Fabry disease: overall effects of agalsidase alfa treatment. Eur J Clin Invest 34:838–844

    Article  PubMed  CAS  Google Scholar 

  76. Wilcox WR, Banikazemi M, Guffon N et al (2004) Long-term safety and efficacy of enzyme replacement therapy for Fabry disease. Am J Hum Genet 75:65–74

    Article  PubMed  CAS  Google Scholar 

  77. Warnock DG (2005) Fabry disease: diagnosis and management, with emphasis on the renal manifestations. Curr Opin Nephrol Hypertens 14:87–95

    Article  PubMed  Google Scholar 

  78. Kattner E, Schafer A, Harzer K (1997) Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease. Eur J Pediatr 156:292–295

    Article  PubMed  CAS  Google Scholar 

  79. Vormoor J, Ehlert K, Groll AH et al (2004) Successful hematopoietic stem cell transplantation in Farber disease. J Pediatr 144: 132–134

    Article  PubMed  Google Scholar 

  80. Yeager AM, Uhas KA, Coles CD, Davis PC et al (2000) Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant 26:357–363

    Article  PubMed  CAS  Google Scholar 

  81. Harzer K, Paton BC, Poulos A et al (1989) Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr 149:31–39

    Article  PubMed  CAS  Google Scholar 

  82. Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64:269–281

    Article  PubMed  CAS  Google Scholar 

  83. Patterson M., Vanier MT (2004) Niemann-Pick disease type C. In: Zimran A (ed) Glycolipid storage disorders. Adis Communications, Abingdon, pp 79–89

    Google Scholar 

  84. Lossos A, Schlesinger I, Okon E et al (1997) Adult-onset Niemann-Pick type C disease. Clinical, biochemical, and genetic study. Arch Neurol 54:1536–1541

    PubMed  CAS  Google Scholar 

  85. Sleat DE, Wiseman JA, El Banna M et al (2004) Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci USA 101:5886–5891

    Article  PubMed  CAS  Google Scholar 

  86. Niemann-Pick disease type C, Liscum L, Sturley SL (eds) (2004) Biochim Biophys Acta 1685:1–90

    Google Scholar 

  87. Walkley SU, Suzuki K (2004) Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta 1685:48–62

    PubMed  CAS  Google Scholar 

  88. Vanier MT, Rodriguez-Lafrasse C, Rousson R et al (1991) Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta 1096:328–337

    PubMed  CAS  Google Scholar 

  89. Vanier MT, Suzuki K (1998) Recent advances in elucidating Niemann-Pick C disease. Brain Pathol 8:163–174

    Article  PubMed  CAS  Google Scholar 

  90. Patterson MC, Platt F (2004) Therapy of Niemann-Pick disease, type C. Biochim Biophys Acta 1685:77–82

    PubMed  CAS  Google Scholar 

  91. Zervas M, Somers KL, Thrall MA, Walkley SU (2001) Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol 11:1283–1287

    Article  PubMed  CAS  Google Scholar 

  92. Griffin LD, Gong W, Verot L, Mellon SH (2004) Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 10:704–711

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Vanier, MT. (2006). Disorders of Sphingolipid Metabolism. In: Fernandes, J., Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-28785-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28785-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28783-4

  • Online ISBN: 978-3-540-28785-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics