Advertisement

Disorders of Pyruvate Metabolism and the Tricarboxylic Acid Cycle

  • Linda J. De Meirleir
  • Rudy Van Coster
  • Willy Lissens

Abstract

Owing to the role of pyruvate and the tricarboxylic acid (TCA) cycle in energy metabolism, as well as in gluconeogenesis, lipogenesis and amino acid synthesis, defects in pyruvate metabolism and in the TCA cycle almost invariably affect the central nervous system. The severity and the different clinical phenotypes vary widely among patients and are not always specific, with the range of manifestations extending from overwhelming neonatal lactic acidosis and early death to relatively normal adult life and variable effects on systemic functions. The same clinical manifestations may be caused by other defects of energy metabolism, especially defects of the respiratory chain (Chap. 15). Diagnosis depends primarily on biochemical analyses of metabolites in body fluids, followed by definitive enzymatic assays in cells or tissues, and DNA analysis. The deficiencies of pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) constitute defects in gluconeogenesis, and therefore fasting results in hypoglycemia with worsening lactic acidosis. Deficiency of the pyruvate dehydrogenase complex (PDHC) impedes glucose oxidation and aerobic energy production, and ingestion of carbohydrate aggravates lactic acidosis. Treatment of disorders of pyruvate metabolism comprises avoidance of fasting (PC and PEPCK) or minimizing dietary carbohydrate intake (PDHC) and enhancing anaplerosis. In some cases, vitamin or drug therapy may be helpful. Dihydrolipoamide dehydrogenase (E3) deficiency affects PDHC as well as KDHC and the branched-chain 2-ketoacid dehydrogenase (BCKD) complex (Chap. 19), with biochemical manifestations of all three disorders. The deficiencies of the TCA cycle enzymes, the 2-ketoglutarate dehydrogenase complex (KDHC) and fumarase, interrupt the cycle, resulting in accumulation of the corresponding substrates. Succinate dehydrogenase deficiency represents a unique disorder affecting both the TCA cycle and the respiratory chain. Recently, defects of mitochondrial transport of pyruvate and glutamate (▸ Chap. 29) have been identified. Treatment strategies for the TCA cycle defects are limited.

Keywords

Lactic Acidosis Ketogenic Diet Pyruvate Dehydrogenase Complex Pyruvate Metabolism Dihydrolipoamide Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saudubray JM, Marsac C, Charpentier C et al (1976) Neonatal congenital lactic acidosis with pyruvate carboxylase deficiency in two siblings. Acta Paediatr Scand 65:717–724PubMedGoogle Scholar
  2. 2.
    Robinson BH, Oei J, Sherwood WG et al (1984) The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 36:283–294PubMedGoogle Scholar
  3. 3.
    Van Coster RN, Janssens S, Misson JP et al (1998) Prenatal diagnosis of pyruvate carboxylase deficiency by direct measurement of catalytic activity on chorionic villi samples. Prenat Diagn 18: 1041–1044PubMedCrossRefGoogle Scholar
  4. 4.
    Brun N, Robitaille Y, Grignon A et al (1999) Pyruvate carboxylase deficiency: prenatal onset of ischemia-like brain lesions in two sibs with the acute neonatal form. Am J Med Genet 84:94–101PubMedCrossRefGoogle Scholar
  5. 5.
    Ahmad A, Kahler SG, Kishnani PS et al (1999) Treatment of pyruvate carboxylase deficiency with high doses of citrate and aspartate. Am J Med Genet 87: 331–338PubMedCrossRefGoogle Scholar
  6. 5a.
    Garcia-Gazorla A, Rabier D, Touati G et al (2006) Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol 59:121–127CrossRefGoogle Scholar
  7. 6.
    De Vivo DC, Haymond MW, Leckie MP et al (1977) The clinical and biochemical implications of pyruvate carboxylase deficiency. J Clin Endocrinol Metab 45:1281–1296CrossRefGoogle Scholar
  8. 7.
    Robinson BH, Taylor J, Sherwood WG (1980) The genetic heterogeneity of lactic acidosis: occurrence of recognizable inborn errors of metabolism in a pediatric population with lactic acidosis. Pediatr Res 14:956–962PubMedGoogle Scholar
  9. 8.
    Carbone MA, MacKay N, Ling M et al (1998) Amerindian pyruvate carboxylase deficiency is associated with two distinct missense mutations. Am J Hum Genet 62:1312–1319PubMedCrossRefGoogle Scholar
  10. 9.
    Van Coster RN, Fernhoff PM, De Vivo DC (1991) Pyruvate carboxylase deficiency: A benign variant with normal development. Pediatr Res 30:1–4PubMedGoogle Scholar
  11. 10.
    Marsac C, Augereau Ch, Feldman G et al (1982) Prenatal diagnosis of pyruvate carboxylase deficiency. Clin Chim Acta 119:121–127PubMedCrossRefGoogle Scholar
  12. 11.
    Nyhan WL, Khanna A, Barshop BA et al (2002) Pyruvate carboxylase deficiency — insights from liver transplantation. Mol Genet Metab 77:143–149PubMedCrossRefGoogle Scholar
  13. 12.
    Mochel F, Delonlay P, Touati G et al (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 84:305–312PubMedCrossRefGoogle Scholar
  14. 13.
    Fiser RH, Melsher HL, Fiser DA (1974) Hepatic phosphoenolpyruvate carboxylase (PEPCK) deficiency. A new cause of hypoglycemia in childhood. Pediatr Res 10:60Google Scholar
  15. 14.
    Clayton PT, Hyland K, Brand M, Leonard JV (1986) Mitochondrial phosphoenolpyruvate carboxykinase deficiency. Eur J Pediatr 145:46–50PubMedCrossRefGoogle Scholar
  16. 15.
    Vidnes J, Sovik O (1976) Gluconeogenesis in infancy and childhood. III. Deficiency of the extramitochondrial form of hepatic phosphoenolpyruvate carboxykinase in a case of persistent neonatal hypoglycaemia. Acta Paediatr Scand 65:301–312Google Scholar
  17. 16.
    Leonard JV, Hyland K, Furukawa N, Clayton PT (1991) Mitochondrial phosphoenolpyruvate carboxykinase deficiency. Eur J Pediatr 150:198–199PubMedCrossRefGoogle Scholar
  18. 17.
    Bodnar AG, Cooper JM, Holt LJ et al (1993) Nuclear complementation restores mtDNA levels in cultured cells from a patient with mtDNA depletion. Am J Hum Genet 53:663–669PubMedGoogle Scholar
  19. 18.
    Bodnar AG, Cooper JM, Leonard JV, Schapira AH (1995) Respiratory-deficient human fibroblasts exhibiting defective mitochondrial DNA replication. Biochem J 305:817–822PubMedGoogle Scholar
  20. 19.
    Robinson BH, MacKay N, Chun K, Ling M (1996) Disorders of pyruvate carboxylase and the pyruvate dehydrogenase complex. J Inherit Metab Dis 19:452–462PubMedCrossRefGoogle Scholar
  21. 20.
    Kerr DS, Wexler ID, Tripatara A, Patel MS (1996) Defects of the human pyruvate dehydrogenase complex. In: Patel MS, Roche T, Harris RA (eds) Alpha keto acid dehydrogenase complexes. Birkhauser, Basel, pp 249–270Google Scholar
  22. 21.
    Otero LJ, Brown RM, Brown GK (1998) Arginine 302 mutations in the pyruvate dehydrogenase E1alpha subunit gene: identification of further patients and in vitro demonstration of pathogenicity. Hum Mutat 12:114–121PubMedCrossRefGoogle Scholar
  23. 22.
    De Meirleir L, Specola N, Seneca S, Lissens W (1998) Pyruvate dehydrogenase E1alpha deficiency in a family: different clinical presentation in two siblings. J Inherit Metab Dis 21:224–226PubMedCrossRefGoogle Scholar
  24. 23.
    De Meirleir L (2002) Defects of pyruvate metabolism and the Krebs cycle. J Child Neurol 17[Suppl 3]:3S26–33PubMedGoogle Scholar
  25. 24.
    Michotte A, De Meirleir L, Lissens W et al (1993) Neuropathological findings of a patient with pyruvate dehydrogenase E1 alpha deficiency presenting as a cerebral lactic acidosis. Acta Neuropathol (Berl) 85:674–678PubMedCrossRefGoogle Scholar
  26. 25.
    Brown RM, Head RA, Boubriak II et al (2004) Mutations in the gene for the E1β subunit: a novel cause of pyruvate dehydrogenase deficiency. Hum Genet 115:123–127PubMedCrossRefGoogle Scholar
  27. 26.
    Ito M, Kobashi H, Naito E et al (1992) Decrease of pyruvate dehydrogenase phosphatase activity in patients with congenital lactic acidemia. Clin Chim Acta 209:1–7PubMedCrossRefGoogle Scholar
  28. 27.
    Cameron J, Mai M, Levandovsky N et al (2004) Identification of a novel mutation in the catalytic subunit 1 of the pyruvate dehydrogenase phosphatase (PDP1) gene in two brothers. BBA 1657:38Google Scholar
  29. 28.
    Brown RM, Head RA, Clayton PT, Brown GK (2004) Dihydro lipoamide acetyltransferase deficiency. J Inherit Metab Dis 27:S1, 125Google Scholar
  30. 29.
    Brown RM, Head RA, Brown GK (2002) Pyruvate dehydrogenase E3 binding protein deficiency. Hum Genet 110:187–191PubMedCrossRefGoogle Scholar
  31. 30.
    Lissens W, De Meirleir L, Seneca et al (2000) Mutations in the X-linked pyruvate dehydrogenase (E1) α sububit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficency. Hum Mutat 15:209–219PubMedCrossRefGoogle Scholar
  32. 31.
    Aral B, Benelli C, Ait-Ghezala G et al (1997) Mutations in PDX1, the human lipoyl-containing component X of the pyruvate dehydrogenase-complex gene on chromosome 11p1, in congenital lactic acidosis. Am J Hum Genet 61:1318–1326PubMedCrossRefGoogle Scholar
  33. 32.
    De Meirleir L, Lissens W, Denis R et al (1993) Pyruvate dehydrogenase deficiency: clinical and biochemical diagnosis. Pediatr Neurol 9:216–220PubMedCrossRefGoogle Scholar
  34. 33.
    Kerr DS, Berry SA, Lusk MM et al (1988) A deficiency of both subunits of pyruvate dehydrogenase which is not expressed in fibroblasts. Pediatr Res 24:95–100PubMedGoogle Scholar
  35. 34.
    Sheu KFR, Hu CWC, Utter MF (1981) Pyruvate dehydrogenase complex activity in normal and deficient fibroblasts. J Clin Invest 67:1463–1471PubMedGoogle Scholar
  36. 35.
    Naito E, Ito M, Yokota I et al (2002) Diagnosis and molecular analysis of three male patients with thiamine-responsive pyruvate dehydrogenase complex deficiency. J Neurol Sci 201:33–37PubMedCrossRefGoogle Scholar
  37. 36.
    Falk RE, Cederbaum SD, Blass JP et al (1976) Ketogenic diet in the management of pyruvate dehydrogenase deficiency. Pediatrics 58:713–721PubMedGoogle Scholar
  38. 37.
    Wexler ID, Hemalatha SG, McConnell J et al (1997) Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets. Studies in patients with identical mutations. Neurology 49:1655–1661PubMedGoogle Scholar
  39. 38.
    Naito E, Ito M, Yokota I et al (2002) Thiamine-responsive pyruvate dehydrogenase deficiency in two patients caused by a point mutation (F2005L and L216F) within the thiamine pyrophosphate binding site. Biochim Biophys Acta 1588:79–84PubMedGoogle Scholar
  40. 39.
    Stacpoole PW, Barnes CL, Hurbanis MD et al (1997) Treatment of congenital lactic acidosis with dichloroacetate: a review. Arch Pediatr Adolesc Med 77:535–541Google Scholar
  41. 40.
    Fouque F, Brivet M, Boutron A et al (2003) Differential effect of DCA treatment on the pyruvate dehydrogenase complex in patients with severe PDHC deficiency. Pediatr Res 53:793–799PubMedCrossRefGoogle Scholar
  42. 41.
    Elpeleg ON, Ruitenbeek W, Jakobs C et al (1995) Congenital lacticacidemia caused by lipoamide dehydrogenase deficiency with favorable outcome. J Pediatr 126:72–74PubMedCrossRefGoogle Scholar
  43. 42.
    Elpeleg ON, Shaag A, Glustein JZ et al (1997) Lipoamide dehydrogenase deficiency in Ashkenazi Jews: an insertion mutation in the mitochondrial leader sequence. Hum Mutat 10:256–257PubMedCrossRefGoogle Scholar
  44. 43.
    Grafakou O, Oexle K, van den Heuvel L et al (2003) Leigh syndrome due to compound heterozygosity of dihydrolipoamide dehydrogenase gene mutations. Description of the first E3 splice site mutation. Eur J Pediatr 162:714–718PubMedCrossRefGoogle Scholar
  45. 44.
    Shaag A, Saada A, Berger I et al (1999) Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am J Med Genet 82:177–182PubMedCrossRefGoogle Scholar
  46. 45.
    Scherer SW, Otulakowski G, Robinson BH, Tsui LC (1991) Localization of the human dihydrolipoamide dehydrogenase gene (DLD) to 7q31 > q32. Cytogenet Cell Genet 56:176–177PubMedGoogle Scholar
  47. 46.
    Elpeleg ON, Shaag A, Glustein JZ et al (1997) Lipoamide dehydrogenase deficiency in Ashkenazi Jews: an insertion mutation in the mitochondrial leader sequence. Hum Mutat 10:256–257PubMedCrossRefGoogle Scholar
  48. 47.
    Hong YS, Kerr DS, Liu TC et al (1997) Deficiency of dihydrolipoamide dehydrogenase due to two mutant alleles (E340K and G101del). Analysis of a family and prenatal testing. Biochim Biophys Acta 1362:160–168PubMedGoogle Scholar
  49. 48.
    Hong YS, Kerr DS, Craigen WJ et al (1996) Identification of two mutations in a compound heterozygous child with dihydrolipoamide dehydrogenase deficiency. Hum Mol Genet 5:1925–1930PubMedCrossRefGoogle Scholar
  50. 49.
    Shany E, Saada A, Landau D et al (1999) Lipoamide dehydrogenase deficiency due to a novel mutation in the interface domain. Biochim Biophys Res Comm 262:163–166CrossRefGoogle Scholar
  51. 50.
    Cerna L, Wenchich L, Hansikova H et al (2001) Novel mutations in a boy with dihydrolipoamide dehydrogenase deficiency. Med Sci Monit 7:1319–1325PubMedGoogle Scholar
  52. 51.
    Hong YS, Korman SH, Lee J et al (2003) Identification of a common mutation (Gly194Cys) in both Arab Moslem and Ashkenazi Jewish patients with dihydrolipoamide dehydrogenase (E3) deficiency: possible beneficial effect of vitamin therapy. J Inherit Metab Dis 26:816–818PubMedCrossRefGoogle Scholar
  53. 52.
    Sakaguchi Y, Yoshino M, Aramaki S et al (1986) Dihydrolipoyl dehydrogenase deficiency: a therapeutic trial with branched-chain amino acid restriction. Eur J Pediatr 145:271–274PubMedCrossRefGoogle Scholar
  54. 53.
    Bonnefont JP, Chretien D, Rustin P et al (1992) Alpha-ketoglutarate dehydrogenase deficiency presenting as congenital lactic acidosis. J Pediatr 121:255–258PubMedCrossRefGoogle Scholar
  55. 54.
    Rustin P, Bourgeron T, Parfait B et al (1997) Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim Biophys Acta 1361:185–197PubMedGoogle Scholar
  56. 55.
    Dunckelman RJ, Ebinger F, Schulze A et al (2000) 2-ketoglutarate dehydrogenase deficiency with intermittent 2-ketoglutaric aciduria. Neuropediatrics 31:35–38CrossRefGoogle Scholar
  57. 56.
    Al Aqeel A, Rashed M, Ozand PT et al (1994) A new patient with alpha-ketoglutaric aciduria and progressive extrapyramidal tract disease. Brain Dev 16[Suppl]:33–37PubMedCrossRefGoogle Scholar
  58. 57.
    Surendran S, Michals-Matalon K, Krywawych S et al (2002) DOOR syndrome: deficiency of E1 component of the 2-oxoglutarate dehydrogenase complex. Am J Med Genet 113:371–374PubMedCrossRefGoogle Scholar
  59. 58.
    Zinn AB, Kerr DS, Hoppel CL (1986) Fumarase deficiency: a new cause of mitochondrial encephalomyopathy. N Engl J Med 315:469–475PubMedCrossRefGoogle Scholar
  60. 59.
    Kerrigan JF, Aleck KA, Tarby TJ et al (2000) Fumaric aciduria: clinical and imaging features. Ann Neurol 47:583–588PubMedCrossRefGoogle Scholar
  61. 60.
    Coughlin EM, Chalmers RA, Slaugenhaupt SA et al (1993) Identification of a molecular defect in a fumarase deficient patient and mapping of the fumarase gene. Am J Hum Genet 53:86–89Google Scholar
  62. 61.
    Bourgeron T, Chretien D, Poggi-Bach J et al (1994) Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J Clin Invest 93:2514–2518PubMedGoogle Scholar
  63. 62.
    Coughlin EM, Christensen E, Kunz PL et al (1998) Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol Genet Metab 63:254–262PubMedCrossRefGoogle Scholar
  64. 63.
    Remes AM, Filppula SA, Rantala H et al (2004) A novel mutation of the fumarase gene in a family with autosomal recessive fumarase deficiency J Mol Med 82:550–554PubMedCrossRefGoogle Scholar
  65. 64.
    Gross KL, Panhuysen CI, Kleinman MS et al (2004) Involvement of fumarate hydratase in nonsyndromic uterine leiomyomas: genetic linkage analysis and FISH studies. Genes Chromosomes Cancer 41:183–190PubMedCrossRefGoogle Scholar
  66. 65.
    Rivner MH, Shamsnia M, Swift TR et al (1989) Kearns-Sayre syndrome and complex II deficiency. Neurology 39:693–696PubMedGoogle Scholar
  67. 66.
    Bourgeron T, Rustin P, Chretien D et al (1995) Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 11:144–149PubMedCrossRefGoogle Scholar
  68. 67.
    Taylor RW, Birch-Machin MA, Schaefer J et al (1996) Deficiency of complex II of the mitochondrial respiratory chain in late-onset optic atrophy and ataxia. Ann Neurol 39:224–232PubMedCrossRefGoogle Scholar
  69. 68.
    Haller RG, Henriksson KG, Jorfeldt L et al (1991) Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. J Clin Invest 88:1197–1206PubMedGoogle Scholar
  70. 69.
    Hall RE, Henriksson KG, Lewis SF et al (1993) Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron-sulfur proteins. J Clin Invest 92:2660–2666PubMedCrossRefGoogle Scholar
  71. 70.
    Van Coster R, Seneca S, Smet J et al (2003) Homozygous Gly555Glu mutation in the nuclear-encoded 70kDa Flavoprotein Gene Causes instability of the respiratory chain complex II. Am J Med Genet 120A:13–18CrossRefPubMedGoogle Scholar
  72. 71.
    Parfait B, Chretien D, Rotig A et al (2000) Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 106:236–243PubMedCrossRefGoogle Scholar
  73. 72.
    Birch-Machin MA, Taylor RW, Cochran B et al (2000) Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann Neurol 48:330–335PubMedCrossRefGoogle Scholar
  74. 73.
    Rustin P, Munnich A, Rotig A (2002) Succinate dehydrogenase and human diseases: new insights into a well-known enzyme Eur J Hum Genet 10:289–291PubMedCrossRefGoogle Scholar
  75. 74.
    Brockmann K, Bjornstad A, Dechent P et al (2002) Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol 52:38–46PubMedCrossRefGoogle Scholar
  76. 75.
    Brivet M, Garcia-Cazorla A, Lyonnet S et al (2003) Impaired mitochondrial pyruvate importation in a patient and a fetus at risk. Mol Gen Metab 78:186–192CrossRefGoogle Scholar
  77. 76.
    Selak MA, Grover WM, Foley CM et al (1997) Possible defect in pyruvate transport in skeletal muscle mitochondria from four children with encephalomyopathies and myopathies. International Conference on Mitochondrial Diseases, Philadelphia, Abstract 59Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • Linda J. De Meirleir
    • 1
  • Rudy Van Coster
    • 2
  • Willy Lissens
    • 3
  1. 1.Department of Pediatrics, Akademisch ZiekenhuisVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of PediatricsGhent University HospitalGhentBelgium
  3. 3.Center for Medical Genetics, Akademisch ZiekenhuisVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations