Advertisement

Pre-pruning Decision Trees by Local Association Rules

  • Tomoya Takamitsu
  • Takao Miura
  • Isamu Shioya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3177)

Abstract

This paper proposes a pre-pruning method called KLC4 for decision trees, and our method, based on KL divergence, drops candidate attributes irrelevant to classification. We compare our technique to conventional ones, and show usefulness of our technique by experiments.

Keywords

Decision Tree Association Rule Intermediate Node Child Node Information Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB 1994 (1994)Google Scholar
  2. 2.
    Fürnkranz, J.: Pre-Pruning and Post-Pruning. Machine Learning 27-2, 139–171 (1997)CrossRefGoogle Scholar
  3. 3.
    Furukawa, K., Ozaki, T., et al.: Inductive Logic Programming, Kyoritsu (2001)Google Scholar
  4. 4.
    Han, J., Kamber, M.: Data Mining - Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)Google Scholar
  5. 5.
    Holte, R.C.: Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning 11-1 (1993)Google Scholar
  6. 6.
    Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In: Proc. Conference on Knowledge Discovery and Data Mining, pp. 80–86 (1998)Google Scholar
  7. 7.
    Pfahringer, B.: Inducing Small and Accurate Decision Trees, Technical Report TR-98-09, Oesterreichisches Forschungsinstitut für Artificial Intelligence, Wien (1998)Google Scholar
  8. 8.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  9. 9.
    Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics 21(3), 660–674 (1991)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Takamitsu, T., Miura, T., Shioya, I.: Testing Structure of Decision Trees. In: Proc. Info. Syst. and Engr.(ISE) (2002)Google Scholar
  11. 11.
    Takamitsu, T., Miura, T., Shioya, I.: Decision Trees using Class Hierarchy. In: Proc. Hybrid Intelligent System, HIS (2003)Google Scholar
  12. 12.
    Terabe, M., Katai, O., Sawaragi, T., Washio, T., Motoda, H.: Attribute Generation Based on Association Rules. J. of JSAI 15-1 (2000)Google Scholar
  13. 13.
    UCI Machine Learning Repository (2004), http://www1.ics.uci.edu/~mlearn/

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Tomoya Takamitsu
    • 1
  • Takao Miura
    • 1
  • Isamu Shioya
    • 2
  1. 1.Dept. of Elect. & Elect. Engr.HOSEI UniversityTokyoJapan
  2. 2.Dept.of Management and InformaticsSANNO UniversityKanagawaJapan

Personalised recommendations