Advertisement

The Categorisation of Similar Non-rigid Biological Objects by Clustering Local Appearance Patches

  • Hongbin Wang
  • Phil F. Culverhouse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3177)

Abstract

A novel approach is presented to the categorisation of non-rigid biological objects from unsegmented scenes in an unsupervised manner. The biological objects investigated are five phytoplankton species from the coastal waters of the European Union. The high morphological variability within each species and the high similarity between species make the categorisation task a challenge for both marine ecologists and machine vision systems. The framework developed takes a local appearance approach to learn the object model, which is done using a novel-clustering algorithm with minimal supervised information. Test objects are classified based on matches with local patches of high occurrence. Experiments show that the method achieves good results, given the difficulty of the task.

Keywords

Interest Point Local Patch Agglomerative Hierarchical Cluster Machine Vision System Characteristic Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Cognitive Neuroscience 3, 71–86 (1990)Google Scholar
  2. 2.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. ICCV, pp. 1150–1157 (1999)Google Scholar
  3. 3.
    Schiele, B., Crowley, J.L.: Recognition without Correspondence using Multidimensional Receptive Field Histograms. Int. J. Computer Vision 36(1), 31–50 (2000)CrossRefGoogle Scholar
  4. 4.
    Weber, M., Welling, M., Perona, P.: Unsupervised learning of object models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Culverhouse, P.F., Williams, R., Reguera, B., Herry, V., González-Gil, S.: Do Experts Make Mistakes? Mar-Ecol-Prog-Ser. 247, 17–25 (2003)CrossRefGoogle Scholar
  7. 7.
    Culverhouse, P.F., Williams, R., Reguera, B., Ellis, R., Parisini, T.: Automatic Categorisation of 23 species of Dinoflagellate by Artificial Neural Network. Ecol. Prog. Ser. 139, 281–287 (1996)CrossRefGoogle Scholar
  8. 8.
    Toth, L., Culverhouse, P.F.: 3D object recognition from static 2D views using multiple coarse data channels. Image and Vision computing 17, 845–858 (1999)CrossRefGoogle Scholar
  9. 9.
    Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affine-invariant neighborhoods. In: CVPR 2003 (2003)Google Scholar
  10. 10.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: IEEE Comp. Vis. and Patt. Rec., vol. II, pp. 257–263 (2003)Google Scholar
  12. 12.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New York (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hongbin Wang
    • 1
  • Phil F. Culverhouse
    • 1
  1. 1.Centre for Interactive Intelligent Systems, School of Computing, Communications and ElectronicsUniversity of PlymouthPlymouthUK

Personalised recommendations