The Search for Genericity in Graphics Recognition Applications: Design Issues of the Qgar Software System

  • Jan Rendek
  • Gérald Masini
  • Philippe Dosch
  • Karl Tombre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3163)

Abstract

This paper presents the main design and development issues of the Qgar software environment for graphics recognition applications. We aim at providing stable and robust implementations of state-of-the-art methods and algorithms, within an intuitive and user-friendly environment. The resulting software system is open, so that our applications can be easily interfaced with other systems, and, conversely, that third-party applications can be “plugged” into our environment with little effort. The paper also presents a quick tour of the various components of the Qgar environment, and concentrates on the usefulness of this kind of system for testing and evaluation purposes.

Keywords

Document Analysis Document Image Image Processing Application Graphic Recognition Document Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kohl, C., Mundy, J.: The development of the Image Understanding Environment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, pp. 443–447 (1994)Google Scholar
  2. 2.
    Lerner, R.A.: The Image Understanding Environment progress since IUW 1997. In: Proceedings of the 1998 DARPA Image Understanding Workshop, Monterey, CA, USA (1998)Google Scholar
  3. 3.
    Baird, H.S.: Anatomy of a versatile page reader. Proceedings of the IEEE 80, 1059–1065 (1992)CrossRefGoogle Scholar
  4. 4.
    Dengel, A.R., Klein, B.: SmartFIX: A requirements-driven system for document analysis and understanding. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 433–444. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Dengel, A.R.: Making Documents Work: Challenges for Document Understanding. In: Proceedings of 7th International Conference on Document Analysis and Recognition, Edinburgh, Scotland, UK, pp. 1026–1035 (2003)Google Scholar
  6. 6.
    Gorski, N., Anisimov, V., Augustin, E., Baret, O., Maximov, S.: Industrial bank check processing: the A2iA CheckReader. International Journal on Document Analysis and Recognition 3, 196–206 (2001)CrossRefGoogle Scholar
  7. 7.
    Shamilian, J.H., Baird, H.S., Wood, T.L.: A retargetable table reader. In: Proceedings of 4th International Conference on Document Analysis and Recognition, Ulm (Germany), pp. 158–163 (1997)Google Scholar
  8. 8.
    Niyogi, D., Srihari, S.N., Govindaraju, V.: Analysis of printed forms. In: Bunke, H., Wang, P.S.P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 485–502. World Scienti’c, Singapore (1997)Google Scholar
  9. 9.
    Cracknell, C., Downton, A.C.: A Handwriting Understanding Environment (HUE) for rapid prototyping in handwriting and document analysis research. In: Proceedings of 5th International Conference on Document Analysis and Recognition, Bangalore (India), pp. 362–365 (1999)Google Scholar
  10. 10.
    Pasternak, B.: Adaptierbares Kernsystem zur Interpretation von Zeichnungen. Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.), Universität Hamburg (1996)Google Scholar
  11. 11.
    Coüasnon, B.: DMOS: A generic document recognition method. Application to an automatic generator of musical scores, mathematical formulae and table structures recognition systems. In: Proceedings of the 6th International Conference on Document Analysis and Recognition, Seattle, WA (USA), pp. 215–220 (2001) Google Scholar
  12. 12.
    Dosch, P., Ah-Soon, C., Masini, G., Sánchez, G., Tombre, K.: Design of an integrated environment for the automated analysis of architectural drawings. In: Lee, S.-W., Nakano, Y. (eds.) DAS 1998. LNCS, vol. 1655, pp. 295–309. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Droettboom, M., MacMillan, K., Fujinaga, I.: The Gamera framework for building custom recognition systems. In: Proceedings of the Symposium on Document Image Understanding Technologies, Greenbelt, Maryland (USA), pp. 275–286 (2003)Google Scholar
  14. 14.
    Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A complete system for analysis of architectural drawings. International Journal on Document Analysis and Recognition 3, 102–116 (2000)CrossRefGoogle Scholar
  15. 15.
    Tombre, K., Ah-Soon, C., Dosch, P., Habed, A., Masini, G.: Stable, robust and off-the-shelf methods for graphics recognition. In: Proceedings of the 14th International Conference on Pattern Recognition, Brisbane (Australia), pp. 406–408 (1998)Google Scholar
  16. 16.
    Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S.: Stable and robust vectorization: How to make the right choices. In: Chhabra, A.K., Dori, D. (eds.) GREC 1999. LNCS, vol. 1941, pp. 3–18. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Clavier, E., Masini, G., Delalandre, M., Rigamonti, M., Tombre, K., Gardes, J.: DocMining: A cooperative platform for heterogeneous document interpretation according to user-defined scenarios. In: Proceedings of 5th IAPR International Workshop on Graphics Recognition, Barcelona (Spain), pp. 21–32 (2003)Google Scholar
  18. 18.
    Meyer, B.: Object-oriented software construction, 2nd edn. The Object- Oriented Series. Prentice-Hall, Englewood Cliffs (1997)MATHGoogle Scholar
  19. 19.
    Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Transactions on PAMI 10, 910–918 (1988)Google Scholar
  20. 20.
    Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics separation revisited. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 200–211. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Beck, K.: Extreme programming explained: Embrace change. Addison-Wesley Professional, Reading (2000)Google Scholar
  22. 22.
    Fowler, M.: Refactoring – Improving the design of existing code. Addison-Wesley, Reading (2000)Google Scholar
  23. 23.
    Phillips, I.T., Chhabra, A.K.: Empirical performance evaluation of graphics recognition systems. IEEE Transactions on PAMI 21, 849–870 (1999)Google Scholar
  24. 24.
    Kanungo, T., Haralick, R.M., Baird, H.S., Stuezle, W., Madigan, D.: A statistical, nonparametric methodology for document degradation model validation. IEEE Transactions on PAMI 22, 1209–1223 (2000)Google Scholar
  25. 25.
    Valveny, E., Dosch, P.: Symbol recognition contest: A synthesis. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 368–385. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  26. 26.
    Hilaire, X.: A matching scheme to enhance performance evaluation of raster-tovector conversion systems. In: Proceedings of 7th International Conference on Document Analysis and Recognition, Edinburgh (Scotland, UK), pp. 629–633 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan Rendek
    • 1
  • Gérald Masini
    • 1
  • Philippe Dosch
    • 1
  • Karl Tombre
    • 1
  1. 1.LORIAVandœuvre-lès-Nancy CedexFrance

Personalised recommendations