Advertisement

Pipelined Computation of Scalar Multiplication in Elliptic Curve Cryptosystems

  • Pradeep Kumar Mishra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3156)

Abstract

In the current work we propose a pipelining scheme for implementing Elliptic Curve Cryptosystems (ECC). The scalar multiplication is the dominant operation in ECC. It is computed by a series of point additions and doublings. The pipelining scheme is based on a key observation: to start the subsequent operation one need not wait until the current one exits. The next operation can begin while a part of the current operation is still being processed. To our knowledge, this is the first attempt to compute the scalar multiplication in such a pipelined method. Also, the proposed scheme can be made resistant to side-channel attacks (SCA). Our scheme compares favourably to all SCA resistant sequential and parallel methods.

Keywords

Elliptic curve cryptosystems pipelining scalar multiplication Jacobian coordinates 

References

  1. 1.
    Aoki, K., Hoshino, F., Kobayashi, T., Oguro, H.: Elliptic Curve Arithmetic Using SIMD. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 235–247. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost Solutions for Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Trans. on Computers 53(6), 760–768 (2004)CrossRefGoogle Scholar
  4. 4.
    Ciet, M.: Aspects of Fast and Secure Arithmetics for Elliptic Curve Cryptography, Ph. D. Thesis, Louvain-la-Neuve, Belgique Google Scholar
  5. 5.
    Cohen, C.: Analysis of the flexible window powering algorithm. To appear J. Cryptology (2004) Google Scholar
  6. 6.
    Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.-P.: Parallel Scalar Multiplication on General Elliptic Curves over Fp hedged against Non-Differential Side-Channel Attacks, Available at IACR eprint Archive, Technical Report No 2002/007, http://www.iacr.org
  9. 9.
    Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited, Technical Report, CORR 2003-18, Department of Combinatorics and Optimization, University of Waterloo, Canada (2003)Google Scholar
  10. 10.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  11. 11.
    Izu, T., Möller, B., Takagi, T.: Improved Elliptic Curve Multiplication Methods Resistant Against Side Channel Attacks. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 296–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Izu, T., Takagi, T.: Fast Elliptic Curve Multiplications with SIMD operation. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 217–230. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Izu, T., Takagi, T.: Fast elliptic curve multiplications with SIMD operations. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 217–230. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Izu, T., Takagi, T.: Improved elliptic curve multiplication methods resistant against side channel attacks. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 296–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Joye, M., Tymen, C.: Protection against differential attacks for elliptic curve cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 377. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computations 48, 203–209 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Koyama, K., Tsuruoka, Y.: Speeding up elliptic Curve Cryptosystems Using a Signed Binary Windows Method. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 345–357. Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  21. 21.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  22. 22.
    Solinas, J.: Efficient arithmetic on Koblitz curves, in Designs. Codes and Cryptography 19, 195–249 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pradeep Kumar Mishra
    • 1
  1. 1.Cryptographic Research GroupIndian Statistical InstituteKolkataINDIA

Personalised recommendations