Skip to main content

Algebraic Recognizability of Languages

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

Abstract

Recognizable languages of finite words are part of every computer science cursus, and they are routinely described as a cornerstone for applications and for theory. We would like to briefly explore why that is, and how this word-related notion extends to more complex models, such as those developed for modeling distributed or timed behaviors.

This paper was prepared in part while the author was an invited Professor at the University of Nebraska-Lincoln. He also acknowledges partial support from project versydis (ACI Sécurité Informatique, Ministère de la Recherche).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, J.: Finite semigroups and universal algebra. Series in Algebra 3. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  2. Alur, R., Dill, D.: A Theory of Timed Automata. Theoret. Computer Science 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Asarin, E., Maler, O., Caspi, P.: Timed Regular Expressions. Journal of the ACM 49, 172–206 (2002)

    Article  MathSciNet  Google Scholar 

  5. Beaudry, M.: Finite idempotent groupoids and regular languages. RAIRO Informatique théorique 32, 127–140 (1998)

    MathSciNet  Google Scholar 

  6. Beaudry, M.: Languages recognized by finite aperiodic groupoids. Theoret. Computer Science 209, 299–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beaudry, M., Lemieux, F., Thérien, D.: Finite loops recognize exactly the regular open languages. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 110–120. Springer, Heidelberg (1997)

    Google Scholar 

  8. Beaudry, M., Lemieux, F., Thérien, D.: Star-free open languages and aperiodic loops. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 87–98. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Bedon, N.: Logic over words on denumerable ordinals. J. Computer and System Science 63, 394–431 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bedon, N.: Automata, semigroups and recognizability of words on ordinals. Intern. J. Algebra and Computation 8, 1–21 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berstel, J.: Transductions and context-free languages, Teubner, Stuttgart (1979)

    Google Scholar 

  12. Bouyer, P., Petit, A., Thérien, D.: An algebraic characterization of data and timed languages. Information and Computation 182, 137–162 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bruyère, V., Carton, O.: Automata on linear orderings. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 103–115. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Cho, S., Huynh, D.T.: Finite automaton aperiodicity is PSAPCE-complete. Theoret. Computer Science 88, 99–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Choueka, Y.: Finite automata, definable sets, and regular expressions over ωn-tapes. J. Computer and System Sciences 17, 81–97 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Courcelle, B.: Basic notions of universal algebra for language theory and graph grammars. Theoret. Computer Science 163, 1–54 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Courcelle, B.: The monadic second-order logic of graphs X: Linear orders. Theoret. Computer Science 160, 87–143 (1996)

    Article  MathSciNet  Google Scholar 

  19. Courcelle, B.: The expression of graph properties and graph transformations in monadic second order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations, ch. 5, vol. 1, pp. 313–400. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  20. Courcelle, B.: The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set quantifications. Theoret. Computer Science 299, 1–36 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Courcelle, B., Weil, P.: The recognizability of sets of graphs is a robust property (to appear)

    Google Scholar 

  22. Carton, O.: Wreath product and infinite words. J. Pure and Applied Algebra 153, 129–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Corneil, D., Lerchs, H., Stewart, L.: Complement reducible graphs. Discrete Applied Mathematics 3, 163–174 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Demri, S., D’Souza, D.: An Automata-Theoretic Approach to Constraint LTL. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 121–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall, Boca Raton (2002)

    MATH  Google Scholar 

  26. Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for mazurkiewicz traces. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 232–241. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific, Singapore (1995)

    Google Scholar 

  28. Dima, C.: Real-time automata and the Kleene algebra of sets of real numbers. J. Automata, Languages and Computation 6, 3–23 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Doner, J.: Tree acceptors and some of their applications. J. Comput. System Sci. 4, 406–451 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ebinger, W., Muscholl, A.: On logical definability of omega-trace languages. Theoret. Computer Science 154, 67–84 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, Part 1: clans, basic subclasses and morphism. Part 2: representation through labeled tree families. Theoret. Computer Science 70, 277–303, 305–342 (1990)

    Google Scholar 

  32. Ehrenfeucht, A., Rozenberg, G.: Angular 2-structures. Theoret. Computer Science 92, 227–248 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Eilenberg, S.: Automata, languages and machines, vol. A (1974) and vol. B (1976), Academic Press, New York

    Google Scholar 

  34. Engelfriet, J., Harju, T., Proskurowski, A., Rozenberg, G.: Characterization and complexity of uniformly nonprimitive labeled 2-structures. Theoret. Computer Science 154, 247–282 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ésik, Z., Németh, Z.: Higher dimensional automata (to appear)

    Google Scholar 

  36. Ésik, Z., Weil, P.: On logically defined recognizable tree languages. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 195–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  37. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal logic. Inform. and Computation 179, 279–295 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Francez, N., Kaminski, M.: An algebraic characterization of deterministic regular languages over infinite alphabets. Theoret. Computer Science 306, 155–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gécseg, F., Steinby, M.: Tree automata, Akadémiai Kiadó, Budapest (1994)

    Google Scholar 

  40. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, Springer, New York (1997)

    Google Scholar 

  41. Grabowski, J.: On partial languages. Fundamenta Informatica 4, 427–498 (1981)

    MATH  MathSciNet  Google Scholar 

  42. Guaiana, G., Restivo, A., Salemi, S.: Star-Free Trace Languages. Theoret. Computer Science 97, 301–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  43. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: Regular Collections of Message Sequence Charts. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 405–414. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  44. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: On Message Sequence Graphs and Finitely Generated Regular MSC Languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 675–686. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  45. Henzinger, T., Raskin, J.-F., Schobbens, P.-Y.: The Regular Real-Time Languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  46. Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 136–148. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  47. Hoogeboom, H.J., ten Pas, P.: Text languages in an algebraic framework. Fundamenta Informatica 25, 353–380 (1996)

    MATH  Google Scholar 

  48. Hoogeboom, H.J., ten Pas, P.: Monadic second order definable text languages. Theory Comput. Syst. 30, 335–354 (1997)

    MATH  MathSciNet  Google Scholar 

  49. Kamp, J.A.: Tense logic and the theory of linear order, Ph. D. Thesis, UCLA (1968)

    Google Scholar 

  50. Kim, S., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the local testability problem of deterministic finite automata. IEEE Trans. Comput. 40, 1087–1093 (1991)

    Article  MathSciNet  Google Scholar 

  51. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  52. Kuske, D.: Towards a language theory for infinite N-free pomsets. Theoret. Computer Science 299, 347–386 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  53. Kuske, D.: Regular sets of infinite message sequence charts. Information and Computation 187, 90–109 (2003)

    Article  MathSciNet  Google Scholar 

  54. Lapoire, D.: Recognizability equals Monadic Second-Order definability, for sets of graphs of bounded tree-width. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  55. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theoret. Computer Science 237, 347–380 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Information and Computation 171, 269–293 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. McConnell, R., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Mathematics 201, 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  58. Maler, O., Pnueli, A.: On recognizable timed languages. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 348–362. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  59. Meenakshi, B., Ramanujam, R.: Reasoning about layered message-passing systems. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 268–282. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  60. Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Information and Control 11, 3–29 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  61. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)

    Google Scholar 

  62. Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing distributed finite-state systems from MSCs. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 521–535. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  63. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  64. Peled, D.: Specification and Verification of Message Sequence Charts. In: Proc. FORTE 2000, IFIP Conference Proceedings, vol. 183, pp. 139–154. Kluwer, Dordrecht (2000)

    Google Scholar 

  65. Perrin, D., Pin, J.-E.: Semigroups and automata on infinite words. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and Groups, pp. 49–72. Kluwer, Dordrecht (1995)

    Google Scholar 

  66. Perrin, D., Pin, J.-E.: Infinite words, Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

    Google Scholar 

  67. Pin, J.-E.: Variétés de langages formels, Masson, Paris (1984); English translation: Varieties of formal languages, Plenum, New-York (1986)

    Google Scholar 

  68. Pin, J.-E.: Logic, Semigroups and Automata on Words. Annals of Mathematics and Artificial Intelligence 16, 343–384 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  69. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of formal languages, vol. I, pp. 679–746. Springer, Heidelberg (1997)

    Google Scholar 

  70. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Systems 30, 383–422 (1997)

    MATH  MathSciNet  Google Scholar 

  71. Potthoff, A.: Modulo counting quantifiers over finite trees. In: Raoult, J.-C. (ed.) CAAP 1992. LNCS, vol. 581, pp. 265–278. Springer, Heidelberg (1992)

    Google Scholar 

  72. Potthoff, A.: First order logic on finite trees. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, Springer, Heidelberg (1995)

    Google Scholar 

  73. Sakarovitch, J.: Élements de théorie des automates, Vuibert, Paris (2003)

    Google Scholar 

  74. Schützenberger, M.P.: Sur le produit de concaténation non ambigu. Semigroup Forum 13, 47–75 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  75. Sipser, M.: Introduction to the theory of computation. International Thompson Publishing (1996)

    Google Scholar 

  76. Stern, J.: Characterization of some classes of regular events. Theoret. Computer Science 35, 17–42 (1985)

    Article  MATH  Google Scholar 

  77. Straubing, H.: Finite automata, formal logic, and circuit complexity. Birkhaüser (1994)

    Google Scholar 

  78. Tesson, P., Thérien, D.: Complete classifications for the communication complexity of regular languages. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 62–73. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  79. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Systems Theory 2, 57–81 (1968)

    Article  MathSciNet  Google Scholar 

  80. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation: FO2 = Σ2 ∩ Π2. In: Proc. 13th ACM SToC, pp. 41–47 (1998)

    Google Scholar 

  81. Thérien, D., Wilke, T.: Temporal logic and semidirect products: An effective characterization of the until hierarchy. SIAM Journal on Computing 31, 777–798 (2002)

    Article  Google Scholar 

  82. Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal logic for Mazurkiewicz traces. In: Proc. LICS 1997, pp. 183–194 (1997)

    Google Scholar 

  83. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25, 360–375 (1982)

    Article  MATH  Google Scholar 

  84. Thomas, W.: Automata theory on trees and partial orders. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 20–38. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  85. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 133–192. Elsevier, Amsterdam (1990)

    Google Scholar 

  86. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 389–455. Springer, New York (1997)

    Google Scholar 

  87. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series-parallel digraphs. SIAM J. Comput. 11, 298–313 (1981)

    Article  MathSciNet  Google Scholar 

  88. Weil, P.: On the logical definability of certain graph and poset languages. J. Automata, Languages and Computation 9, 147–165 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weil, P. (2004). Algebraic Recognizability of Languages. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics