Advertisement

Hands-On Robotic Surgery: Is This the Future?

  • Brian L. Davies
  • Simon J. Harris
  • Ferdinando Rodriguez y Baena
  • Paula Gomes
  • Matjaz Jakopec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3150)

Abstract

An introduction to robotic surgery is given, together with a classification of the range of systems available with their problems and benefits. The potential for a new class of robot system, called a hands-on robot is then discussed. The hands-on robotic system, which is called Acrobot®, is then presented for total knee replacement (TKR) surgery and for uni-condylar knee replacement (UKR) surgery. CT-based software is used to accurately plan the procedure pre-operatively. Intra-operatively, the surgeon guides a small, special-purpose robot, which is mounted on a gross positioning device. The Acrobot® uses active constraint control, which constrains the motion to a predefined region, and thus allows the surgeon to safely cut the knee bones to fit a TKR or a UKR prosthesis with high precision. A non-invasive anatomical registration method is used. The system has undergone early clinical trials of a TKR surgery and, more recently a blind randomised clinical trial of UKR surgery. Preliminary results of the UKR study are presented in which the pre-operative CT based plan is contrasted with a post operative CT scan of the result, in an attempt to gain an objective assessment of the efficacy of the procedure. Finally, proposals for future requirements of robotic surgery systems are given.

Keywords

Robotic surgery Medical robotics Active constraint control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies, B.L., Harris, S.J., Hibberd, R.D.: The Probot- an active robot for prostate resection. In: Proc. I Mech E, Part H, vol. 211(H4), pp. 317–326 (1997)Google Scholar
  2. 2.
    Casula, R., Athanasiou, T., Darzi, A.: Minimal acess coronary revascularisation without cardiopulmonary bypass - The impact of robotic technology in current clinical practice. Int J Medical Robotics and Computer Aided Surgery 1(1), 98–106 (2004)CrossRefGoogle Scholar
  3. 3.
    Tew, M., Waugh, W.: Tibiofemoral Alignment and the Results of Knee Replacement. Journal of Bone and Joint Surgery 67-B(4), 551–556 (1985)Google Scholar
  4. 4.
    Jakopec, M., Harris, S.J., Rodriguez y Baena, F., Gomes, P., Cobb, J., Davies, B.L.: The First Clinical Application of a ”Hands-on” Robotic Knee Surgery System. Computer Aided Surgery 6(6), 329–339 (2001)Google Scholar
  5. 5.
    Cobb, J., Henckel, J., Richards, R., Harris, S., Jakopec, M., Rodriguez, F., Gomes, P.: Robot assisted minimally invasive uni-compartmental arthroplasty: results of first clinical trials. In: Proc. CAOS Int. Conf. 2004, Chicago, pp. 4–6 (2004) ISBN 0-9754971-0-3Google Scholar
  6. 6.
    Mittelstadt, B.D., Kazanzides, P., Zuhars, J.F., Williamson, B., Cain, P., Smith, F., Bargar, W.L.: The Evolution of a Surgical Robot from Prototype to Human Clinical Use. In: Taylor, R.H., Lavallee, S., Burdea, G.C., Mösges, R. (eds.) Computer-Integrated Surgery: Technology and Clinical Applications, pp. 397–407. The MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Siebert, W., Mai, S., Kober, R., Heeckt, P.F.: Technique and First Clinical Results of Robot-Assisted Total Knee Replacement. The Knee 9(3), 173–180 (2002)CrossRefGoogle Scholar
  8. 8.
    Ho, S.C., Hibberd, R.D., Davies, B.L.: Robot Assisted Knee Surgery. IEEE Engineering in Medicine and Biology 14(3), 292–300 (1995)CrossRefGoogle Scholar
  9. 9.
    Harris, S.J., Jakopec, M., Cobb, J., Hibberd, R.D., Davies, B.L.: Interactive Preoperative Selection of Cutting Constraints, and Interactive Force Controlled Knee Surgery by a Surgical Robot. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 996–1006. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Harris, S.J., Jakopec, M., Cobb, J., Davies, B.L.: Intra-operative Application of a Robotic Knee Surgery System. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1116–1124. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.: Iterative Point Matching for Registration of Free-Form Curves and Surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Brian L. Davies
    • 1
  • Simon J. Harris
    • 1
  • Ferdinando Rodriguez y Baena
    • 1
  • Paula Gomes
    • 1
  • Matjaz Jakopec
    • 1
  1. 1.Mechatronics in Medicine, Mechanical Engineering DepartmentImperial College LondonLondonUK

Personalised recommendations