Determination of the Intracranial Volume: A Registration Approach

  • Sven Hentschel
  • Frithjof Kruggel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3150)


An algorithm to segment the intracranial compartment from PD-weighted MR images of the human head is described. If only a T1-weighted dataset is available for a given subject, an artifical PD-weighted dataset is computed from a dual-weighted reference by non-linear registration of the T1-weighted datasets, and the intracranial compartment is segmented from this artificial dataset. The performance of the algorithm is evaluated on the basis of 12 dual-weighted datasets with an average volume difference of 2.05% and an average overlap (Dice index) of 0.968.


Intracranial Volume Registration Approach Magnetic Resonance Imaging Dataset Intracranial Compartment Dice Similarity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, A.H., Netherway, D.J., Niemann, D.B., Clark, B., Yamamoto, M., Cole, J., Hanieh, A., Moore, M.H., David, D.J.: CT-determined intracranial volume for a normal population. J Craniofac. Surg. 11, 211–223 (2000)CrossRefGoogle Scholar
  2. 2.
    Alfano, B., Brunetti, A., Covelli, E.M., Quarantelli, M., Parnico, M.R., Ciarmiello, A., Salvatore, M.: Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach. Magn. Reson. Med. 37, 84–93 (1997)CrossRefGoogle Scholar
  3. 3.
    Alfano, B., Quarantelli, M., Brunetti, A., Larobina, M., Covelli, E.M., Tedeschi, E., Salvatore, M.: Reproducibility of intracranial volume measurement by unsupervised multispectral brain segmentation. Magn. Reson. Med. 39, 497–499 (1998)CrossRefGoogle Scholar
  4. 4.
    Andersen, A.H., Zhang, Z., Avison, M.J., Gash, D.M.: Automated segmentation of multispectral brain MR images. J Neurosci. Meth. 122, 13–23 (2002)CrossRefGoogle Scholar
  5. 5.
    Christensen, G.E.: Deformable shape models for anatomy. Thesis, Washington University, St. Louis (1996)Google Scholar
  6. 6.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar
  7. 7.
    Edland, S.D., Xu, Y., Plevak, M., O’Brien, P., Tangalos, E.G., Petersen, R.C., Jack, C.R.: Total intracranial volume: normative values and lack of assiociation with Alzheimer’s disease. Neurology 59, 272–274 (2002)Google Scholar
  8. 8.
    Eritaia, J., Wood, S.J., Stuart, G.W., Bridle, N., Dudgeon, P., Maruff, P., Velakoulis, D., Pantelis, C.: An optimized method for estimating intracranial volume from magnetic resonance images. Magn. Reson. Med. 44, 973–977 (2000)CrossRefGoogle Scholar
  9. 9.
    Falkner, F.: Normal growth and development: current concepts. Postgrad. Med. 62, 58–63 (1977)Google Scholar
  10. 10.
    Hahn, F.J., Chu, W.K., Cheung, J.Y.: CT measurements of cranial growth: normal subjects. Am J Roentgenol. 142, 1253–1255 (1984)Google Scholar
  11. 11.
    Jenkins, R., Fox, N.C., Rossor, A.M., Harvey, R.J., Rossor, M.N.: Intracranial volume and Alzheimer disease. Arch. Neurol. 57, 220–224 (2000)Google Scholar
  12. 12.
    Kruggel, F., Lohmann, G.: BRIAN (Brain Image Analysis) - A toolkit for the analysis of multimodal brain data sets. In: Computer Aided Radiology (CAR 1996), pp. 323–328. Elsevier, Amsterdam (1996)Google Scholar
  13. 13.
    Kruggel, F., von Cramon, D.Y.: Alignment of magnetic-resonance brain datasets with the stereotactical coordinate system. Med. Imag. Anal. 3, 1–11 (1999)CrossRefGoogle Scholar
  14. 14.
    Lee, J.H., Garwood, M., Menon, R., Adriany, G., Andersen, P., Truwit, C.L., Ugurbil, K.: High contrast and fast three-dimensional magnetic resonance imaging at high fields. Magn. Reson. Med. 34, 308–312 (1995)CrossRefGoogle Scholar
  15. 15.
    Lemieux, L., Hagemann, G., Krakow, K., Woermann, F.G.: Fast, accurate, and reproducible automatic segmentation of the brain and in T1-weighted volume MRI data. Magn. Reson. Med. 42, 127–135 (1999)CrossRefGoogle Scholar
  16. 16.
    Lemieux, L., Hammers, A., Mackinnon, T., Liu, R.S.N.: Automatic segmentation of the brain and intracranial cerebrospinal fluid in T1-weighted volume MRI scans of the head, and its application to serial cerebral and intracranial volumetry. Magn. Reson. Med. 49, 872–884 (2003)CrossRefGoogle Scholar
  17. 17.
    Pham, D.L., Prince, J.L.: An adaptive fuzzy segmentation algorithm of magnetic resonance images. IEEE T Med. Imag. 18, 737–752 (1999)CrossRefGoogle Scholar
  18. 18.
    Sgouros, S., Hockley, A.D., Goldin, J.H., Wake, M.J., Natarajan, K.: Intracranial volume change in craniosynostosis. J Neurosurg 91, 617–625 (1999)CrossRefGoogle Scholar
  19. 19.
    Sgouros, S., Goldin, J.H., Hockley, A.D., Wake, M.J., Natarajan, K.: Intracranial volume change in childhood. J Neurosurg 91, 610–616 (1999)CrossRefGoogle Scholar
  20. 20.
    Wolf, H., Kruggel, F., Hensel, A., Wahlund, L.O., Arendt, T., Gertz, H.J.: The relationship between head size and intracranial volume in elderly subjects. Brain Res. 973, 74–80 (2003)CrossRefGoogle Scholar
  21. 21.
    Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3D pictures. Comp. Graph. Imag. Proc. 17, 315–331 (1981)Google Scholar
  22. 22.
    Wolf, H., Hensel, A., Kruggel, F., Riedel-Heller, S.G., Arendt, T., Wahlund, L.O., Gertz, H.J.: Structural correlates of mild cognitive impairment. Neurobiol Aging 25 (2004) (in print)Google Scholar
  23. 23.
    Wollny, G., Kruggel, F.: Computational cost of non-rigid registration algorithms based on fluid dynamics. IEEE T Med. Imag. 21, 946–952 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sven Hentschel
    • 1
  • Frithjof Kruggel
    • 1
  1. 1.Interdisziplinäres Zentrum für Klinische Forschung (IZKF)LeipzigGermany

Personalised recommendations