Skip to main content

Bose-Einstein Condensation

  • Chapter
Quantum Optics
  • 10k Accesses

abstract

Bose-Einstein condensation (BEC) refers to a prediction of quantum statistical mechanics (Bose [1], Einstein [2]) where an ideal gas of identical bosons undergoes a phase transition when the thermal de Broglie wavelength exceeds the mean spacing between the particles. Under these conditions, bosons are stimulated by the presence of other bosons in the lowest energy state to occupy that state as well, resulting in a macroscopic occupation of a single quantum state. The condensate that forms constitutes a macroscopic quantum-mechanical object. BEC was first observed in 1995, seventy years after the initial predictions, and resulted in the award of 2001 Nobel Prize in Physics to Cornell, Ketterle and Weiman. The experimental observation of BEC was achieved in a dilute gas of alkali atoms in a magnetic trap. The first experiments used 87Rb atoms [3], 23Na [4], 7Li [5], and H [6] more recently metastable He has been condensed [7]. The list of BEC atoms now includes molecular systems such as Rb2 [8], Li2 [9] and Cs2 [10]. In order to cool the atoms to the required temperature (~200 nK) and densities (1013–1014 cm–3) for the observation of BEC a combination of optical cooling and evaporative cooling were employed. Early experiments used magnetic traps but now optical dipole traps are also common. Condensates containing up to 5x109 atoms have been achieved for atoms with a positive scattering length (repulsive interaction), but small condensates have also been achieved with only a few hundred atoms. In recent years Fermi degenerate gases have been produced [11], but we will not discuss these in this chapter.

BECs are now routinely produced in dozens of laboratories around the world. They have provided a wonderful test bed for condensed matter physicswith stunning experimental demonstrations of, among other things, interference between condensates, superfluidity and vortices. More recently they have been used to create optically nonlinear media to demonstrate electromagnetically induced transparency and neutral atom arrays in an optical lattice via a Mott insulator transition.

Many experiments on BECs are well described by a semiclassical theory discussed below. Typically these involve condensates with a large number of atoms, and in some ways are analogous to describing a laser in terms of a semiclassical mean field. More recent experiments however have begun to probe quantum 397 398 19 Bose-Einstein Condensation properties of the condensate, and are related to the fundamental discreteness of the field and nonlinear quantum dynamics. In this chapter, we discuss some of these quantum properties of the condensate. We shall make use of “few mode” approximations which treat only essential condensate modes and ignore all noncondensate modes. This enables us to use techniques developed for treating quantum optical systems described in earlier chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. S.N. Bose: Z. Phys. 26, 178 (1924)

    Article  ADS  Google Scholar 

  2. A. Einstein: Sitzber. Kgl. Preuss. Akad. Wiss. 3 (1925)

    Google Scholar 

  3. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman,E.A. Cornell: 1995, Science 269, 198 (1995)

    Google Scholar 

  4. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten,D.S. Durfee, D.M. Kurn, W. Ketterle:Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  5. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet: Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  6. Fried, D.G., T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, D. Kleppner, T.J. Greytak: Phys. Rev. Lett. 81, 3811 (1998)

    Article  ADS  Google Scholar 

  7. A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C.I. Westbrook, A. Aspect: Science, 292, 461 (2001)

    Article  ADS  Google Scholar 

  8. R. Wynar, R.S. Freeland, D.J. Han, C. Ryu, D.J. Heinzen: Science 287, 1016 (2000)

    Article  ADS  Google Scholar 

  9. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle: Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  10. C. Chin, Andrew J. Kerman, V. Vuleti, S. Chu: Phys. Rev. Lett. 90, 033201 (2003)

    Article  ADS  Google Scholar 

  11. C.A. Regal, M. Greiner, D.S. Jin: Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  12. O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hnsch, I. Bloch:Nature, 425, 937–940 (2003)

    Article  ADS  Google Scholar 

  13. E.M. Lifshitz, L.P. Pitaevskii: Statistical Physics, Part II (Pergamon, Oxford 1980)

    Google Scholar 

  14. J.A. Dunningham, M.J. Collett, D.F. Walls: Phys. Lett. A, 245, 49 (1998)

    Article  ADS  Google Scholar 

  15. J.C. Eilbeck, P.S. Lomdahl, A.C. Scott: Physica D, 16, 318 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. R. Gati, M. Albiez, J. Fölling, B. Hemmerling, M.K. Oberthaler: Appl. Phys. B 82, 207 (2006)

    Article  ADS  Google Scholar 

  17. D. Ananikian, T. Bergeman: Phys. Rev.A, 73, 013604 (2006)

    Article  ADS  Google Scholar 

  18. M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn,W. Ketterle: Science 275, 637 (1997)

    Article  Google Scholar 

  19. M.J. Steel, M.J. Collett: Phys. Rev. A Type="Bold">57, 2920 (1998)

    Article  ADS  Google Scholar 

  20. M. Lewenstein, L. You: Phys. Rev. Lett. 77, 3489 (1996b)

    Article  ADS  Google Scholar 

  21. E.M. Wright, D.F. Walls, J.C. Garrison: Phys. Rev. Lett. 77, 2158 (1996)

    Article  ADS  Google Scholar 

  22. A. Öttl, S. Ritter, M.l Köhl, and T. Esslinger, Phys. Rev. Letts., 95, 090404 (2005)

    Article  Google Scholar 

  23. J. Javanainen, S.M. Yoo: Phys. Rev. Lett. 76, 161 (1996)

    Article  ADS  Google Scholar 

  24. T. Wong, M.J. Collett, D.F. Walls: Phys. Rev. A 54, R3718 (1996)

    Article  ADS  Google Scholar 

  25. G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Phys. Rev A. 55, 4318 (1997)

    Article  ADS  Google Scholar 

  26. Yu. Kagan, B.V. Svistunov, G.V. Shlyapnikov: JETP Lett. 42, 209 (1985)

    ADS  Google Scholar 

  27. E.A. Burt, R.W. Ghrist, C.J. Myatt, M.J. Holland,E.A. Cornell, C.E. Wieman: Phys. Rev. Lett. 79, 337 (1997)

    Article  ADS  Google Scholar 

  28. W. Ketterle, H.-J. Miesner: Phys. Rev. A 56, 3291 (1997)

    Article  ADS  Google Scholar 

Further Reading

  • J.R. Anglin, W. Ketterle: Bose-Einstein Condensation of Atomic Gases, Nature, 416, 211 (2002)

    Article  ADS  Google Scholar 

  • A. Leggett: Bose-Einstein Condensation in the Alkali Gases, Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  • F. Dalfovo, S. Giorgini, L.P.Pitaevskii, S. Stringari: Theory of Bose-Einstein Condensation in Trapped Gases, Rev. Mod. Phys. 71, 463 (2001)

    Google Scholar 

  • I. Bloch: Ultracold Quantum Gases in Optical Lattices, Nat. Phys. 1, 23 (2005)

    Article  Google Scholar 

  • A.S. Parkins, D.F. Walls: Bose-Einstein condensation in Dilute Atomic Vapors, Phys Rep. 303, 1 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walls, D., Milburn, G.J. (2008). Bose-Einstein Condensation. In: Walls, D., Milburn, G.J. (eds) Quantum Optics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28574-8_19

Download citation

Publish with us

Policies and ethics