Abstract
Let f(x) be a continuous, homothetic function defined in a connected cone D. Assume that f is strictly increasing along each ray in D, i.e. for each x0 ≠ 0 in D, f(tx0) is a strictly increasing function of t. Then there exist a homogeneous function g and a strictly increasing function F such that f(x) = F(g(x)) for all x in D
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Most of the formulas are standard and can be found in almost any calculus text, e.g. Edwards and Penney (1998), or Sydsæter and Hammond (2005). For supergradients and differentiability, see e.g. Sydsæter et al. (2005). For properties of homothetic functions, see Simon and Blume (1994), Shephard (1970), and Førsund (1975).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sydsæter, K., Strøm, A., Berck, P. (2010). Partial derivatives. In: Economists’ Mathematical Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28518-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-28518-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26088-2
Online ISBN: 978-3-540-28518-2
eBook Packages: Business and EconomicsEconomics and Finance (R0)
