Abstract
Notation for a matrix, where a ij is the element in the ith row and the jth column. The matrix has order m × n. If m = n, the matrix is square of order n. An upper triangular matrix. (All elements below the diagonal are 0.) The transpose of A(see (19.11)) is called lower triangular.
Keywords
- Linear Transformation
- Generalize Inverse
- Matrix Norm
- Lower Triangular
- Penrose Inverse
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Most of the formulas are standard and can be found in almost any linear algebra text, e.g. Fraleigh and Beauregard (1995) or Lang (1987). See also Sydsæter and Hammond (2005) and Sydsæter et al. (2005). For (19.26)–(19.29), see e.g. Faddeeva (1959). For generalized inverses, see Magnus and Neudecker (1988). A standard reference is Gantmacher (1959).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sydsæter, K., Strøm, A., Berck, P. (2010). Matrices. In: Economists’ Mathematical Manual. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28518-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-28518-2_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26088-2
Online ISBN: 978-3-540-28518-2
eBook Packages: Business and EconomicsEconomics and Finance (R0)
