Skip to main content

The Arabidopsis thaliana Glutamate-like Receptor Family (AtGLR)

  • Chapter

Abstract

The 20 genes that encode the Arabidopsis thaliana glutamate-like receptor family (AtGLR) share significant similarity in amino acid coding sequence and predicted secondary structure with animal ionotropic glutamate receptor (iGluR) subunits. In animals, iGluR subunits form glutamate-gated non-selective cation channels (NSCCs) catalysing Na+ and/or Ca2+ influx into cells; in one iGluR subfamily glycine also is required as a coagonist. In Arabidopsis, both glutamate and glycine have been demonstrated to depolarise the plasma membrane and increase [Ca2+]cyt, and iGluR antagonists blocked these effects. AtGLRs are therefore predicted to function in an analogous manner to iGluR. Attempts to functionally characterise AtGLRs in heterologous expression systems have proved inconclusive with no ligand-gated activity detected. Research into the glutamate receptor-like family has been hindered by the lack of phenotypes associated with the AtGLR genes but several phenotypes associated with AtGLR overexpression and knockout have recently given hints as to their function. AtGLR have been implicated in light and C:N signalling, hypocotyl detiolation, root growth, abscisic acid (ABA) metabolism, stress responses, and general ion transport. This review will concentrate on recent developments in the AtGLR field, including the roles and effects of glutamate and glycine and related metabolites in plant physiology relative to potential roles for AtGLRs. It will examine progress made toward defining the functions of particular AtGLRs and will conclude by recommending potentially fruitful avenues of future research.

Keywords

  • Glutamate Receptor
  • Xenopus Oocyte
  • Ionotropic Glutamate Receptor
  • Curr Opin Plant Biol
  • AtGluR2 Gene

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-28516-8_13
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-28516-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acher FC, Bertrand HO (2005) Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif. Biopolymers 80:357–66

    PubMed  CrossRef  CAS  Google Scholar 

  • Anantharam A, Lewis A, Panaghie G, Gordon E, McCrossan ZA, Lerner DJ, Abbott GW (2003) RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies. J Biol Chem 278:11739–11745

    PubMed  CrossRef  CAS  Google Scholar 

  • Brenner ED, Martinez-Barboza N, Clark AP, Liang QS, Stevenson DW, Coruzzi GM (2000) Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta-diaminopropionic acid, a cycad-derived glutamate receptor agonist. Plant Physiol 124:1615–1624

    PubMed  CrossRef  CAS  Google Scholar 

  • Cheffings CM (2001) Calcium channel activity of a plant glutamate receptor homologue. Paper presented at the 12th International Workshop on Plant Membrane Biology. Madison, WI, USA

    Google Scholar 

  • Chen THH, Murata N (2000) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    CrossRef  Google Scholar 

  • Chen G-Q, Cui C, Mayer ML, Gouax E (1999) Functional characterisation of a potassiums-elective prokaryotic glutamate receptor. Nature 402:817–821

    PubMed  CrossRef  CAS  Google Scholar 

  • Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838

    PubMed  CAS  Google Scholar 

  • Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066–1082

    PubMed  CAS  Google Scholar 

  • Cho MH, Spalding EP (1996) An anion channel in Arabidopsis hypocotyls activated by blue light. Proc Natl Acad Sci USA 93:8134–8138

    PubMed  CrossRef  CAS  Google Scholar 

  • Colquhoun D, Silivotti LG (2004) Function and structure in glycine receptors and some of their relatives. Trends Neurosci 27:337–344

    PubMed  CrossRef  CAS  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    PubMed  CrossRef  CAS  Google Scholar 

  • de Jong A, Borstlap AC (2000) Transport of amino acids (L-valine, L-lysine, L-glutamic acid) and sucrose into plasma membrane vesicles isolated from cotyledons of developing pea seeds. J Exp Bot 51:1663–1670

    PubMed  CrossRef  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Physiol Plant Mol Biol 53:67–107

    CAS  Google Scholar 

  • Demidchik V, Essah P, Tester M (2004) Glutamate activates sodium and calcium currents in the plasma membrane of Arabidopsis root cells. Planta 219:167–175

    PubMed  CrossRef  CAS  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    PubMed  CrossRef  CAS  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161–172

    CrossRef  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight M.R, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810

    PubMed  CrossRef  CAS  Google Scholar 

  • Essah PA (2002) Sodium transport and accumulation in A. thaliana. PhD thesis. University of Cambridge, http://plantscience.acpfg.com.au/upload/essah/PAEPHD.pdf

    Google Scholar 

  • Essah PA, Liu LH, Davenport R, Leigh R, Tester M (2005) Using the chemical-regulated inducible inverted-repeat RNA (RNAi) system to elucidate the function(s) of glutamate receptor homologues in Arabidopsis thaliana. Abstract, SEB main meeting, July 11–15, Barcelona, Spain

    Google Scholar 

  • Everts I, Petroski R, Kizelsztein P, Teichberg VI, Heinemann SF, Hollmann M (1999) Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci 19:916–927

    PubMed  CAS  Google Scholar 

  • Fehr M, Okumoto S, Deuschle K, Lager I, Looger LL, Persson J, Kozhukh L, Lalonde S, Frommer WB (2005) Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans 33:287–290

    PubMed  CrossRef  CAS  Google Scholar 

  • Filleur S, Walch-Liu P, Gan Y, Forde, BG (2005) Nitrate and glutamate sensing by plant roots. Biochem Soc Trans 33:283–286

    PubMed  CrossRef  CAS  Google Scholar 

  • Fries N (1953) Limiting factors in the growth of the pea seedling root. Physiol Plant 6:292–300

    CrossRef  CAS  Google Scholar 

  • Gehwolf R, Griessner M, Pertl H, Obermeyer G (2002) First patch, then catch: measuring the activity and the mRNA transcripts of a proton pump in individual Lilium pollen protoplasts. FEBS Lett 512: 152–156

    PubMed  CrossRef  CAS  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 93–102

    Google Scholar 

  • Gilliham M (2005) Plant glutamate receptors — progress to date. Book of Abstracts, Plant Neurobiology, 17–20 May, Florence, Italy

    Google Scholar 

  • Glick M, Robinson DD, Grant GH, Richards WG (2002) Identification of ligand binding sites on proteins using a multi-scale approach. J Am Chem Soc 124:2337–2344

    PubMed  CrossRef  CAS  Google Scholar 

  • Green T, Rogers CA, Contractor A, Heinemann SF (2002) NMDA receptors formed by NR1 in Xenopus laevis oocytes do not contain the endogenous subunit XenU1. Mol Pharmacol 61:326–333

    PubMed  CrossRef  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108

    PubMed  CrossRef  CAS  Google Scholar 

  • Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6872–6877

    PubMed  CrossRef  CAS  Google Scholar 

  • Kang J, Mehta S, Turano FJ (2004) The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss. Plant Cell Physiol 45:1380–1389

    PubMed  CrossRef  CAS  Google Scholar 

  • Kang S, An CS (2003) Localisation and functional analysis of the glutamate receptor from small radish. Book of abstracts, plant biology 2003, June 25–30, Honolulu, HI, USA

    Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    PubMed  CrossRef  CAS  Google Scholar 

  • Kato A, Rouach N, Nicoll RA, Bredt DS (2005) Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci USA 102:5600–5605

    PubMed  CrossRef  CAS  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J, Tester, M (2000) Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim SA, Kwak JM, Jae S-K, Wang M-H, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilisation and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    PubMed  CrossRef  CAS  Google Scholar 

  • Kinraide TB, Etherton B (1980) Electrical evidence for different mechanisms of uptake for basic, neutral and acidic amino acids in oat coleoptiles. Plant Physiol 65:1085–1089

    PubMed  CAS  Google Scholar 

  • Kuruma A, Hirayama Y, Hartzell HC (2000) A hyperpolarization-and acid-activated nonselective cation current in Xenopus oocytes. Am J Physiol Cell Physiol 279:C1401–C1413

    PubMed  CAS  Google Scholar 

  • Kuusinen A, Arvola M, Keinanen K (1995) Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J 14:6327–6332

    PubMed  CAS  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001a) The identity of plant glutamate receptors. Science 292:1486–1487

    PubMed  CrossRef  CAS  Google Scholar 

  • Lacombe B, Meyerhoff O, Steinmeyer R, Becker D, Hedrich R (2001b) Role of Arabidopsis ionotropic glutamate receptors. Abstract. Association ‘Canaux Ioniques’ 12eme colloque, La Londe les Maures

    Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126

    PubMed  CrossRef  CAS  Google Scholar 

  • Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 97:46–51

    PubMed  CrossRef  CAS  Google Scholar 

  • Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Meyerhoff O, Müller K, Roelfsema MRG, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2004) AtGLR3.4 represents an Arabidopsis glutamate-, touch-, and cold-sensitive receptor. Book of abstracts, 13th International Workshop on Plant Membrane Biology, July 6–10, Montpellier, France

    Google Scholar 

  • Meyerhoff O, Müller K, Roelfsema MRG, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3. 4 represents an Arabidopsis glutamate-, touch-, and cold-sensitive Receptor gene. Planta (in press)

    Google Scholar 

  • Otsiogo-Oyabi H. Roblin G (1985) Changes in membrane potential related to glycine uptake in the motor cell of the pulvinus of Mimosa pudica. J Plant Physiol 119:19–24

    CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    PubMed  CrossRef  CAS  Google Scholar 

  • Qi Z, Durham TL, Stephens NR, Spalding EP (2004) Determining functions of Arabidopsis glutamate receptors using electrophysiology and reverse genetics. American Society of Plant Biologists meeting book of abstracts, FL, USA

    Google Scholar 

  • Qi Z, Stephens NR, Durham TL, Spalding EP (2005) AtGLR3.3 and 3.4 differentially mediate glutamate and glycine-induced depolarization in the Arabidopsis root and hypocotyls cells. Midwest ASPB sectional division meeting abstract, Donald Danforth Plant Science Center, St Louis, MO

    Google Scholar 

  • Roy SJ, Widdowson L, Richardson PJ, Leigh RA, Tester M (2004) Single cell gene expression and microarray analysis of GLRs. Book of abstracts, 13th International Workshop on Plant Membrane Biology, July 6–10, Montpellier, France

    Google Scholar 

  • Scott-Taggart CP, Van Cauwenberghe OR, McLean MD, Shelp BJ (1999) Regulation of gamma-aminobutyric acid synthesis in situ by glutamate availability. Physiol Plant 106:363–369

    CrossRef  CAS  Google Scholar 

  • Sekine-Aizawa Y, Huganir R(2004) Imaging of receptor trafficking by usingα-bungarotoxin-binding-site-tagged receptors. Proc Natl Acad Sci USA 101:17114–17119

    PubMed  CrossRef  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur Biophys J 31:341–355

    PubMed  CrossRef  CAS  Google Scholar 

  • Sivaguru M, Pike P, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675

    PubMed  CrossRef  CAS  Google Scholar 

  • Skinner JC, Street HE (1953) Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytol 53:44–67

    CrossRef  Google Scholar 

  • Sprengel R, Seeburg PH (1995) Ionotropic glutamate receptors. In North RA (ed) Handbook of receptors and channels: ligand-and voltage-gated ion channels. CRC, Boca Raton, FL, pp 213–263

    Google Scholar 

  • Strutz-Seebohm N, Werner M, Madsen DM, Seebohm G, Zheng Y, Walker CS, Maricq AV, Hollmann M (2003) Functional analysis of Caenorhabditis elegans glutamate receptor subunits by domain transplantation. J Biol Chem 278:44691–44701

    PubMed  CrossRef  CAS  Google Scholar 

  • Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E (2002) Mechanism of glutamate receptor desensitization. Nature 417:245–253

    PubMed  CrossRef  CAS  Google Scholar 

  • Szabo I, Formentin E, Segalla A, De Marco V, Zanetti M, Rabito G, Marin O, Lo Schiavo F, Giacometti GM (2004) Study of two putative ion channels of chloroplast inner envelope membrane. Book of abstracts, 13th International Workshop on Plant Membrane Biology, July 6–10, Montpellier, France

    Google Scholar 

  • Thum KE, Shasha DE, Lejay LV, Coruzzi GM (2003) Light-and carbon-signaling pathways. Modeling circuits of interactions. Plant Physiol 132:440–452

    PubMed  CrossRef  CAS  Google Scholar 

  • Turano FJ, Muhitch MJ, Felker FC McMahon MB (2002) The putative glutamate receptor 3.2 from Arabidopsis thaliana (AtGLR3.2) is an integral membrane peptide that accumulates in rapidly growing tissues and persists in vascular-associated tissues. Plant Sci 163:43–51

    CrossRef  CAS  Google Scholar 

  • Tzounopoulos T, Maylie J, Adelman JP (1995) Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes. Biophys J 69:904–908

    PubMed  CAS  CrossRef  Google Scholar 

  • Villmann C, Bull L, Hollmann M (1997) Kainate binding proteins possess functional ion channel domains. J Neurosci 17:7634–7643

    PubMed  CAS  Google Scholar 

  • Weber WM (1999) Endogenous ion channels in oocytes of Xenopus laevis: recent developments. J Membr Biol 170:1–12

    PubMed  CrossRef  CAS  Google Scholar 

  • White PR (1939) Glycine in the nutrition of excised tomato roots. Plant Physiol 14:527–538

    PubMed  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1995) Unravelling the modular design of glutamate-gated ion channels Trends Neurosci 18:161–168

    PubMed  CrossRef  CAS  Google Scholar 

  • Yuzaki M (2003) New insights into the structure and function of glutamate receptors: the orphan receptor δ2 reveals its family’s secrets. Keio J Med 52:92–99

    PubMed  CAS  Google Scholar 

  • Zhang WH, Ryan PR, Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125:1459–1472

    PubMed  CrossRef  CAS  Google Scholar 

  • Zheng Y, Mellem JE, Brockie PJ, Madsen DM, Maricq AV (2004) SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature 472:451–457

    CrossRef  CAS  Google Scholar 

  • Zimmerli L, Jakab G, Métraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc Natl Acad Sci USA 97:12920–12925

    PubMed  CrossRef  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilliham, M., Campbell, M., Dubos, C., Becker, D., Davenport, R. (2006). The Arabidopsis thaliana Glutamate-like Receptor Family (AtGLR). In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_13

Download citation