Robustness Aspects in Parameter Estimation, Optimal Design of Experiments and Optimal Control

  • H. G. Bock
  • S. Körkel
  • E. Kostina
  • J. P. Schlöder


Estimating model parameters from experimental data is crucial to reliably simulate dynamic processes. In practical applications, however, it often appears that the data contains outliers. Thus, a reliable parameter estimation procedure is necessary that delivers parameter estimates insensitive (robust) to errors in measurements.

Another difficulty that occurs in practical applications is that the experiments performed to obtain measurements for parameter estimation are expensive, but nevertheless do not guarantee satisfactory parameter accuracy. The optimization of one or more dynamic experiments in order to maximize the accuracy of the results of a parameter estimation subject to cost and further technical inequality constraints leads to very complex non-standard optimal control problems. Newly developed successful methods and software for design of optimal experiments for nonlinear processes are based on the expansion of the problem at the nominal value of parameters which lie in a (possibly large) confidence region. Robust optimal experiments, that are insensitive against uncertainties in parameter values, should be obtained if we optimize the experiments in min-max fashion (worst-case design) over the whole range (confidence region) of an uncertainty set.

The paper presents new effective algorithms for robust parameter estimation and design of robust optimal experiments in dynamic systems. Numerical results for a real-life application from biochemical engineering are presented.


Confidence Region Strict Complementarity Parameter Estimation Problem Optimum Experimental Design Sequential Linear Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, A. C., Donev, A. N.: Optimum Experimental Designs. Oxford University Press (1992)Google Scholar
  2. 2.
    Baake, E., Baake, M., Bock, H. G., Briggs, K.: Fitting ordinary differential equations to chaotic data. Physical Review A, 45 (1992)Google Scholar
  3. 3.
    Bauer, I.: Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung von ersten und zweiten Ableitungen mit Anwendungen in Chemie und Verfahrenstechnik. Preprint, SFB 359, Universität Heidelberg (2001)Google Scholar
  4. 4.
    Bauer, I., Bock, H. G., Körkel, S., Schlöder, J. P.: Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds) Scientific Computing in Chemical Engineering II. 2, 282–289, Springer, Berlin-Heidelberg (1999)Google Scholar
  5. 5.
    Bauer, I., Bock, H. G., Körkel, S., Schlöder, J. P.: Numerical methods for optimum experimental design in DAE systems. Journal of Computational and Applied Mathematics, 120, 1–25 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beck, J. V., Arnold, K. J.:, Parameter estimation in engineering and science Wiley, New York (1977)zbMATHGoogle Scholar
  7. 7.
    Birkes, D., Dodge, Y.: Alternative Methods of Regression. John Wiley and Sons (1993)Google Scholar
  8. 8.
    Bock, H. G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.-K., Deuflhard, P., Jäger, W. (eds) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics 18, 102–125, Springer Verlag (1981)Google Scholar
  9. 9.
    Bock, H. G.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonner Mathematische Schriften, 187, Bonn (1987)Google Scholar
  10. 10.
    Bock, H. G., Kallrath, J., Schlöder, J. P.: Least squares parameter estimation in chaotic differential equations. Celestial Mechanics and Dynamical Astronomy, 56, (1993)Google Scholar
  11. 11.
    Bock, H. G., Kostina, E. A., Schlöder, J. P.: On the role of natural level functions to achieve global convergence for damped newton methods. In: Powell, M.J.D., Scholtes, S. (eds) System Modelling and Optimization. Methods, Theory and Applications. Kluwer (2000)Google Scholar
  12. 12.
    Bock, H. G., Körkel, S., Kostina, E. A., Schlöder, J. P.: Methods for Design of Optimal Experiments with Application to Parameter Estimation in Enzyme Catalytic Processes. In: Hicks, M. G., Kettner C. (eds) Experimental Standard Conditions of Enzyme Characterizations, Proceedings of the International Beilstein Workshop, Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 45–70 (2004)Google Scholar
  13. 13.
    Bock, H. G., Kostina, E. A., Kostyukova, O. I.: Covariance matrices for constrained parameter estimation problems. Submitted to SIAM Journal on Matrix Analysis and Applications (2004)Google Scholar
  14. 14.
    Bommarius, A., Estler, M., Kluge, A., Werner, H., Vollmer, H., Bock, H. G., Schlöder, J. P., Kostina E.: Method to determine the process stability of enzymes. Patent Application EP 1 067 198 A1, European Patent Office, Patentblatt, 2 (2001)Google Scholar
  15. 15.
    Bock, H. G., Körkel, S., Kostina, E. A., Schlöder, J. P.: Numerical Methods for Optimal Control Problems in Design of Robust Optimal Experiments for Nonlinear Dynamic Processes. Optimization Methods and Software, 19, issue 3–4, 327–338 (2004)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Boscovic, R.: Theoria Philosophiae naturalis. Vienna (1758)Google Scholar
  17. 17.
    Box, G. E. P., Tiao, G. C: Bayesian Inference in Statistical Analysis. Wiley Classics Library, John Wiley and Sons (1992)Google Scholar
  18. 18.
    Diehl, M., Bock, H. G., Kostina, E. A.: An Approximation Technique for Robust Nonlinear Optimization. To appear in Mathematical Programming, 2005.Google Scholar
  19. 19.
    Fedorov, V. V.: Theory of Optimal Experiments. Probability And Mathematical Statistics. Academic Press, London (1972)Google Scholar
  20. 20.
    Gabasov, R., Kirillova, F. M., Kostina, E. A.: An adaptive method of solving l 1 extremal problems. Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 38,9, 1461–1472 (1998) (in Russian, trans. to English: Computational Mathematics and Mathematical Physics, 38, 9, 1400–1411, 1998)MathSciNetGoogle Scholar
  21. 21.
    Gauss, C. F.: Theory of Combinations of Observations Least Subject to Errors. Original with translation. SIAM (1995)Google Scholar
  22. 22.
    Gauss, C. F.: Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. F. Perthes and J. H. Besser, Hamburg (1809)Google Scholar
  23. 23.
    Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics. SIAM (2000)Google Scholar
  24. 24.
    Hald, J, Madsen, K,: Combined linear programming and quasi-Newton methods for non-linear L 1 optimization. SIAM Journal on Numerical Analysis, 22, 65–80 (1985)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Huber, P. J.: Robust Statistics. John Wiley and Sons (1981)Google Scholar
  26. 26.
    Körkel, S.: Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen. PhD thesis, Universität Heidelberg (2002)Google Scholar
  27. 27.
    Körkel, S., Bauer, I., Bock, H. G., Schlöder, J. P.: A sequential approach for nonlinear optimum experimental design in DAE systems. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds) Scientific Computing in Chemical Engineering II. 2, 338–345, Springer, Berlin-Heidelberg (1999)Google Scholar
  28. 28.
    Körkel, S., Kostina, E. A.: Numerical methods for nonlinear experimental design. In: Bock, H. G., Kostina E. A., Phu H. X., Rannacher R. (eds) Modeling, Simulation and Optimization of Complex Processes, Proceedings of the International Conference on High Performance Scientific Computing, 2003, Hanoi, Vietnam, Springer (2004)Google Scholar
  29. 29.
    Kostina, E. A.: The long step rule in the bounded-variable dual simplex method: numerical experiments. Mathematical Methods of Operations Research, 55,3, 413–429 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kostina, E. A.: Robust Parameter Estimation in dynamic systems. Preprint IWR/ SFB 359 (2001)Google Scholar
  31. 31.
    Kostina, E. A.: Robust Parameter estimation in dynamic dystems. Optimization and Engineering, 5(4), 461–484 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Kostina, E. A., Prischepova, S. V.: A new algorithm for minimax and Linorm optimization. Optimization (Journal on Mathematical Programming and Operations Research), 44, 263–289, (1998)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Murray, M., Overton, M. L.: A projected Lagrangian algorithm for nonlinear l 1 optimization. SIAM Journal on Scientific and Statistical Computing, 2,2, 207–224 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Pukelsheim, F.: Optimal Design of Experiments. John Wiley & Sons, Inc., New York (1993)zbMATHGoogle Scholar
  35. 35.
    Reemtsen R., Rückmann, J.-J. (eds.): Semi-Infinite Programming. Nonconvex Optimization and its Applications. Kluwer, Boston (1998)Google Scholar
  36. 36.
    Schulz V. H., Bock H. G. and Steinbach M. C: Exploiting invariants in the numerical solution of multipoint boundary value problems for DAE. SIAM Journal on Scientific Computing, 19,2, 440–467 (1998).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. G. Bock
    • 1
  • S. Körkel
    • 1
  • E. Kostina
    • 1
  • J. P. Schlöder
    • 1
  1. 1.Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)Universität HeidelbergHeidelberg

Personalised recommendations